Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 3: 16051, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27556059

RESUMO

Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.

2.
Mol Brain ; 9(1): 52, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27164903

RESUMO

BACKGROUND: Small promoters that recapitulate endogenous gene expression patterns are important for basic, preclinical, and now clinical research. Recently, there has been a promising revival of gene therapy for diseases with unmet therapeutic needs. To date, most gene therapies have used viral-based ubiquitous promoters-however, promoters that restrict expression to target cells will minimize off-target side effects, broaden the palette of deliverable therapeutics, and thereby improve safety and efficacy. Here, we take steps towards filling the need for such promoters by developing a high-throughput pipeline that goes from genome-based bioinformatic design to rapid testing in vivo. METHODS: For much of this work, therapeutically interesting Pleiades MiniPromoters (MiniPs; ~4 kb human DNA regulatory elements), previously tested in knock-in mice, were "cut down" to ~2.5 kb and tested in recombinant adeno-associated virus (rAAV), the virus of choice for gene therapy of the central nervous system. To evaluate our methods, we generated 29 experimental rAAV2/9 viruses carrying 19 different MiniPs, which were injected intravenously into neonatal mice to allow broad unbiased distribution, and characterized in neural tissues by X-gal immunohistochemistry for icre, or immunofluorescent detection of GFP. RESULTS: The data showed that 16 of the 19 (84 %) MiniPs recapitulated the expression pattern of their design source. This included expression of: Ple67 in brain raphe nuclei; Ple155 in Purkinje cells of the cerebellum, and retinal bipolar ON cells; Ple261 in endothelial cells of brain blood vessels; and Ple264 in retinal Müller glia. CONCLUSIONS: Overall, the methodology and MiniPs presented here represent important advances for basic and preclinical research, and may enable a paradigm shift in gene therapy.


Assuntos
Encéfalo/metabolismo , Dependovirus/metabolismo , Olho/metabolismo , Expressão Gênica , Regiões Promotoras Genéticas/genética , Animais , Barreira Hematoencefálica/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Vetores Genéticos/metabolismo , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Recombinação Genética/genética , Células Bipolares da Retina/metabolismo , Transdução Genética
3.
BMC Biol ; 11: 106, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24124870

RESUMO

BACKGROUND: The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome') strategy to expand our understanding of human gene regulation in vivo. RESULTS: In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. CONCLUSIONS: We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression.


Assuntos
Encéfalo/metabolismo , Cromossomos Artificiais Bacterianos/genética , Cromossomos Humanos X/genética , Sequências Reguladoras de Ácido Nucleico , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Angiomotinas , Animais , Fator II de Transcrição COUP/genética , Sistema Nervoso Central/metabolismo , Biologia Computacional , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Loci Gênicos , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas de Membrana/genética , Camundongos , Monoaminoxidase/genética , Proteína Sobre-Expressa em Nefroblastoma/genética , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo
4.
PLoS Genet ; 8(3): e1002544, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22396661

RESUMO

An increasing body of literature from genome-wide association studies and human whole-genome sequencing highlights the identification of large numbers of candidate regulatory variants of potential therapeutic interest in numerous diseases. Our relatively poor understanding of the functions of non-coding genomic sequence, and the slow and laborious process of experimental validation of the functional significance of human regulatory variants, limits our ability to fully benefit from this information in our efforts to comprehend human disease. Humanized mouse models (HuMMs), in which human genes are introduced into the mouse, suggest an approach to this problem. In the past, HuMMs have been used successfully to study human disease variants; e.g., the complex genetic condition arising from Down syndrome, common monogenic disorders such as Huntington disease and ß-thalassemia, and cancer susceptibility genes such as BRCA1. In this commentary, we highlight a novel method for high-throughput single-copy site-specific generation of HuMMs entitled High-throughput Human Genes on the X Chromosome (HuGX). This method can be applied to most human genes for which a bacterial artificial chromosome (BAC) construct can be derived and a mouse-null allele exists. This strategy comprises (1) the use of recombineering technology to create a human variant-harbouring BAC, (2) knock-in of this BAC into the mouse genome using Hprt docking technology, and (3) allele comparison by interspecies complementation. We demonstrate the throughput of the HuGX method by generating a series of seven different alleles for the human NR2E1 gene at Hprt. In future challenges, we consider the current limitations of experimental approaches and call for a concerted effort by the genetics community, for both human and mouse, to solve the challenge of the functional analysis of human regulatory variation.


Assuntos
Técnicas de Transferência de Genes , Variação Genética , Estudo de Associação Genômica Ampla , Sequências Reguladoras de Ácido Nucleico , Animais , Cromossomos Artificiais Bacterianos , Técnicas de Introdução de Genes , Ensaios de Triagem em Larga Escala , Humanos , Hipoxantina Fosforribosiltransferase/genética , Camundongos , Camundongos Transgênicos , Receptores Nucleares Órfãos , Receptores Citoplasmáticos e Nucleares/genética , Cromossomo X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA