Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (200)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37902312

RESUMO

Multiple Sclerosis (MS) is a chronic autoimmune inflammatory disease affecting the central nervous system (CNS). It is characterized by different prevalence in the sexes, affecting more women than men, and different outcomes, showing more aggressive forms in men than in women. Furthermore, MS is highly heterogeneous in terms of clinical aspects, radiological, and pathological features. Thus, it is necessary to take advantage of experimental animal models that allow the investigation of as many aspects of the pathology as possible. Experimental autoimmune encephalomyelitis (EAE) represents one of the most used models of MS in mice, modeling different disease features, from the activation of the immune system to CNS damage. Here we describe a protocol for the induction of EAE in both male and female C57BL/6J mice using myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55) immunization, which leads to the development of a chronic form of the disease. We also report the evaluation of the daily clinical score and motor performance of these mice for 28 days post immunization (28 dpi). Lastly, we illustrate some basic histological analysis at the CNS level, focusing on the spinal cord as the primary site of disease-induced damage.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Feminino , Masculino , Animais , Camundongos , Encefalomielite Autoimune Experimental/induzido quimicamente , Esclerose Múltipla/patologia , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos/efeitos adversos , Camundongos Endogâmicos C57BL , Peptídeos , Modelos Animais de Doenças
2.
Eur J Histochem ; 65(s1)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34755506

RESUMO

Bisphenol A (BPA), an organic synthetic compound found in some plastics and epoxy resins, is classified as an endocrine disrupting chemical. Exposure to BPA is especially dangerous if it occurs during specific "critical periods" of life, when organisms are more sensitive to hormonal changes (i.e., intrauterine, perinatal, juvenile or puberty periods). In this study, we focused on the effects of chronic exposure to BPA in adult female mice starting during pregnancy. Three months old C57BL/6J females were orally exposed to BPA or to vehicle (corn oil). The treatment (4 µg/kg body weight/day) started the day 0 of pregnancy and continued throughout pregnancy, lactation, and lasted for a total of 20 weeks. BPA-treated dams did not show differences in body weight or food intake, but they showed an altered estrous cycle compared to the controls. In order to evidence alterations in social and sociosexual behaviors, we performed the Three-Chamber test for sociability, and analyzed two hypothalamic circuits (well-known targets of endocrine disruption) particularly involved in the control of social behavior: the vasopressin and the oxytocin systems. The test revealed some alterations in the displaying of social behavior: BPA-treated dams have higher locomotor activity compared to the control dams, probably a signal of high level of anxiety. In addition, BPA-treated dams spent more time interacting with no-tester females than with no-tester males. In brain sections, we observed a decrease of vasopressin immunoreactivity (only in the paraventricular and suprachiasmatic nuclei) of BPA-treated females, while we did not find any alteration of the oxytocin system. In parallel, we have also observed, in the same hypothalamic nuclei, a significant reduction of the membrane estrogen receptor GPER1 expression.


Assuntos
Comportamento Animal/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vasopressinas/metabolismo , Animais , Ciclo Estral/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/patologia , Gravidez , Comportamento Social , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/patologia
3.
Brain Pathol ; 31(2): 283-296, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33051914

RESUMO

Multiple Sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) in which inflammation plays a key pathological role. Recent evidences showed that systemic inflammation induces increasing cell infiltration within meninges and perivascular spaces in the brain parenchyma, triggering resident microglial and astrocytic activation. The anti-inflammatory enzyme A20, also named TNF associated protein 3 (TNFAIP3), is considered a central gatekeeper in inflammation and peripheral immune system regulation through the inhibition of NF-kB. The TNFAIP3 locus is genetically associated to MS and its transcripts is downregulated in blood cells in treatment-naïve MS patients. Recently, several evidences in mouse models have led to hypothesize a function of A20 also in the CNS. Thus, here we aimed to unveil a possible contribution of A20 to the CNS human MS pathology. By immunohistochemistry/immunofluorescence and biomolecular techniques on post-mortem brain tissue blocks obtained from control cases (CC) and progressive MS cases, we demonstrated that A20 is present in CC brain tissues in both white matter (WM) regions, mainly in few parenchymal astrocytes, and in grey matter (GM) areas, in some neuronal populations. Conversely, in MS brain tissues, we observed increased expression of A20 by perivascular infiltrating macrophages, resident-activated astrocytes, and microglia in all the active and chronic active WM lesions. A20 was highly expressed also in the majority of active cortical lesions compared to the neighboring areas of normal-appearing grey matter (NAGM) and control GM, particularly by activated astrocytes. We demonstrated increased A20 expression in the active MS plaques, particularly in macrophages and resident astrocytes, suggesting a key role of this molecule in chronic inflammation.


Assuntos
Encéfalo/imunologia , Encéfalo/patologia , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/patologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Masculino , Pessoa de Meia-Idade
4.
Neuroendocrinology ; 111(7): 660-677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32570260

RESUMO

INTRODUCTION: The membrane-associated G protein-coupled estrogen receptor 1 (GPER) mediates the regulation by estradiol of arginine-vasopressin immunoreactivity in the supraoptic and paraventricular hypothalamic nuclei of female rats and is involved in the estrogenic control of hypothalamic regulated functions, such as food intake, sexual receptivity, and lordosis behavior. OBJECTIVE: To assess GPER distribution in the rat hypothalamus. METHODS: GPER immunoreactivity was assessed in different anatomical subdivisions of five selected hypothalamic regions of young adult male and cycling female rats: the arcuate nucleus, the lateral hypothalamus, the paraventricular nucleus, the supraoptic nucleus, and the ventromedial hypothalamic nucleus. GPER immunoreactivity was colocalized with NeuN as a marker of mature neurons, GFAP as a marker of astrocytes, and CC1 as a marker of mature oligodendrocytes. RESULTS: GPER immunoreactivity was detected in hypothalamic neurons, astrocytes, and oligodendrocytes. Sex and regional differences and changes during the estrous cycle were detected in the total number of GPER-immunoreactive cells and in the proportion of neurons, astrocytes, and oligodendrocytes that were GPER-immunoreactive. CONCLUSIONS: These findings suggest that estrogenic regulation of hypothalamic function through GPER may be different in males and females and may fluctuate during the estrous cycle in females.


Assuntos
Astrócitos/metabolismo , Ciclo Estral/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Caracteres Sexuais , Animais , Feminino , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar
5.
Artigo em Inglês | MEDLINE | ID: mdl-32849310

RESUMO

G protein-coupled estrogen receptor (GPER) in the amygdala and the dorsal hippocampus mediates actions of estradiol on anxiety, social recognition and spatial memory. In addition, GPER participates in the estrogenic regulation of synaptic function in the amygdala and in the process of adult neurogenesis in the dentate gyrus. While the distribution of the canonical estrogen receptors α and ß in the amygdala and dorsal hippocampus are well characterized, little is known about the regional distribution of GPER in these brain regions and whether this distribution is affected by sex or the stages of the estrous cycle. In this study we performed a morphometric analysis of GPER immunoreactivity in the posterodorsal medial, anteroventral medial, basolateral, basomedial and central subdivisions of the amygdala and in all the histological layers of CA1 and the dentate gyrus of the dorsal hippocampal formation. The number of GPER immunoreactive cells was estimated in these different structures. GPER immunoreactivity was detected in all the assessed subdivisions of the amygdaloid nucleus and dorsal hippocampal formation. The number of GPER immunoreactive cells was higher in males than in estrus females in the central (P = 0.001) and the posterodorsal medial amygdala (P < 0.05); higher in males than in diestrus females in the strata orients (P < 0.01) and radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer of the dentate gyrus (P < 0.01); higher in diestrus females than in males in the basolateral amygdala (P < 0.05); higher in diestrus females than in estrus females in the central (P < 0.01), posterodorsal medial (P < 0.01) and basolateral amygdala (P < 0.01) and higher in estrus females than in diestrus females in the strata oriens (P < 0.05) and radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer (P < 0.05) and the hilus of the dentate gyrus (P < 0.05). The findings suggest that estrogenic regulation of the amygdala and hippocampus through GPER may be different in males and in females and may fluctuate during the estrous cycle.


Assuntos
Tonsila do Cerebelo/metabolismo , Estro/fisiologia , Hipocampo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Tonsila do Cerebelo/imunologia , Animais , Feminino , Hipocampo/imunologia , Masculino , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/imunologia , Fatores Sexuais
6.
Artigo em Inglês | MEDLINE | ID: mdl-30687229

RESUMO

The metabolism-disrupting chemicals (MDCs) are molecules (largely belonging to the category of endocrine disrupting chemicals, EDCs) that can cause important diseases as the metabolic syndrome, obesity, Type 2 Diabetes Mellitus or fatty liver. MDCs act on fat tissue and liver, may regulate gut functions (influencing absorption), but they may also alter the hypothalamic peptidergic circuits that control food intake and energy metabolism. These circuits are normally regulated by several factors, including estrogens, therefore those EDCs that are able to bind estrogen receptors may promote metabolic changes through their action on the same hypothalamic circuits. Here, we discuss data showing how the exposure to some MDCs can alter the expression of neuropeptides within the hypothalamic circuits involved in food intake and energy metabolism. In particular, in this review we have described the effects at hypothalamic level of three known EDCs: Genistein, an isoflavone (phytoestrogen) abundant in soy-based food (a possible new not-synthetic MDC), Bisphenol A (compound involved in the manufacturing of many consumer plastic products), and Tributyltin chloride (one of the most dangerous and toxic endocrine disruptor, used in antifouling paint for boats).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA