Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JAMA Oncol ; 8(5): 698-705, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35238873

RESUMO

Importance: The drug HD201 is a biosimilar candidate for breast cancer treatment as the reference trastuzumab. Objective: To compare the efficacy of HD201 with referent trastuzumab. Design, Setting, and Participants: This randomized clinical trial (TROIKA) included 502 women with ERBB2-positive early breast cancer treated with either HD201 or referent trastuzumab. It was conducted across 70 centers in 12 countries, including Western and Eastern Europe and Asian countries. Randomization was stratified by tumor hormone receptor status, clinical stage, and geographic region of recruitment. This analysis was conducted on February 12, 2021, after the completion of the adjuvant phase at a median of 31 months (IQR, 28-33 months) of follow-up. Interventions: Patients with ERBB2-positive early breast cancer were randomly assigned to receive HD201 or referent trastuzumab in the neoadjuvant setting for 8 cycles, concurrently with 4 cycles of docetaxel, which was followed by 4 cycles of epirubicin and cyclophosphamide. Patients then underwent surgery, which was followed by treatment with 10 cycles of adjuvant HD201 or referent trastuzumab. Main Outcome and Measures: The primary end point was the total pathological complete response (tpCR) assessed after neoadjuvant treatment. Equivalence was concluded if the 95% CI of the absolute difference in tpCR between arms in the per-protocol set was within the margin of more or less than 15%. Other objectives included the breast pathological complete response, overall response, event-free and overall survival, safety, pharmacokinetics, and immunogenicity. Results: A total of 502 female patients (mean [range] age, 53 [26-82] years) were randomized to receive either HD201 or referent trastuzumab, and 474 (94.2%) were eligible for inclusion in the per-protocol set. The baseline characteristics were well balanced between the 2 arms; 195 tumors (38.8%) were hormone receptor-negative , and 213 patients (42.4%) had clinical stage III disease. The tpCR rates were 45% and 48.7% for HD201 and referent trastuzumab, respectively. The difference between the 2 groups was not significant at -3.8% (95% CI, -12.8% to 5.4%) and fell within the predefined equivalence margins. The ratio of the tpCR rates between the 2 arms was 0.92 (95% CI, 0.76 to 1.12). A total of 433 patients (86.1%) presented with 2232 treatment-emergent adverse events of special interest for trastuzumab during the entire treatment period, with 220 (88.0%) and 213 (84.5%) patients in the HD201 and referent trastuzumab groups, respectively. Conclusions and Relevance: The results of this randomized clinical trial found that HD201 demonstrated equivalence to referent trastuzumab in terms of efficacy for the end point of tpCR, with a similar safety profile. Trial Registration: ClinicalTrials.gov Identifier: NCT03013504.


Assuntos
Antineoplásicos , Neoplasias da Mama , Terapia Neoadjuvante , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptor ErbB-2 , Trastuzumab/efeitos adversos , Trastuzumab/uso terapêutico
2.
ACS Infect Dis ; 4(4): 635-645, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29341586

RESUMO

Cryptosporidiosis is a diarrheal disease predominantly caused by Cryptosporidium parvum ( Cp) and Cryptosporidium hominis ( Ch), apicomplexan parasites which infect the intestinal epithelial cells of their human hosts. The only approved drug for cryptosporidiosis is nitazoxanide, which shows limited efficacy in immunocompromised children, the most vulnerable patient population. Thus, new therapeutics and in vitro infection models are urgently needed to address the current unmet medical need. Toward this aim, we have developed novel cytopathic effect (CPE)-based Cp and Ch assays in human colonic tumor (HCT-8) cells and compared them to traditional imaging formats. Further model validation was achieved through screening a collection of FDA-approved drugs and confirming many previously known anti- Cryptosporidium hits as well as identifying a few novel candidates. Collectively, our data reveals this model to be a simple, functional, and homogeneous gain of signal format amenable to high throughput screening, opening new avenues for the discovery of novel anticryptosporidials.


Assuntos
Antiprotozoários/isolamento & purificação , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/crescimento & desenvolvimento , Avaliação Pré-Clínica de Medicamentos/métodos , Células Epiteliais/parasitologia , Antiprotozoários/farmacologia , Linhagem Celular , Humanos
3.
Nature ; 546(7658): 376-380, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28562588

RESUMO

Diarrhoeal disease is responsible for 8.6% of global child mortality. Recent epidemiological studies found the protozoan parasite Cryptosporidium to be a leading cause of paediatric diarrhoea, with particularly grave impact on infants and immunocompromised individuals. There is neither a vaccine nor an effective treatment. Here we establish a drug discovery process built on scalable phenotypic assays and mouse models that take advantage of transgenic parasites. Screening a library of compounds with anti-parasitic activity, we identify pyrazolopyridines as inhibitors of Cryptosporidium parvum and Cryptosporidium hominis. Oral treatment with the pyrazolopyridine KDU731 results in a potent reduction in intestinal infection of immunocompromised mice. Treatment also leads to rapid resolution of diarrhoea and dehydration in neonatal calves, a clinical model of cryptosporidiosis that closely resembles human infection. Our results suggest that the Cryptosporidium lipid kinase PI(4)K (phosphatidylinositol-4-OH kinase) is a target for pyrazolopyridines and that KDU731 warrants further preclinical evaluation as a drug candidate for the treatment of cryptosporidiosis.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Criptosporidiose/tratamento farmacológico , Criptosporidiose/parasitologia , Cryptosporidium/efeitos dos fármacos , Cryptosporidium/enzimologia , Pirazóis/farmacologia , Piridinas/farmacologia , Animais , Animais Recém-Nascidos , Bovinos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Hospedeiro Imunocomprometido , Interferon gama/deficiência , Interferon gama/genética , Masculino , Camundongos , Camundongos Knockout , Pirazóis/química , Pirazóis/farmacocinética , Piridinas/química , Piridinas/farmacocinética , Ratos , Ratos Wistar
4.
Nature ; 541(7638): 541-545, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28068668

RESUMO

Cell fate perturbations underlie many human diseases, including breast cancer. Unfortunately, the mechanisms by which breast cell fate are regulated are largely unknown. The mammary gland epithelium consists of differentiated luminal epithelial and basal myoepithelial cells, as well as undifferentiated stem cells and more restricted progenitors. Breast cancer originates from this epithelium, but the molecular mechanisms that underlie breast epithelial hierarchy remain ill-defined. Here, we use a high-content confocal image-based short hairpin RNA screen to identify tumour suppressors that regulate breast cell fate in primary human breast epithelial cells. We show that ablation of the large tumour suppressor kinases (LATS) 1 and 2 (refs 5, 6), which are part of the Hippo pathway, promotes the luminal phenotype and increases the number of bipotent and luminal progenitors, the proposed cells-of-origin of most human breast cancers. Mechanistically, we have identified a direct interaction between Hippo and oestrogen receptor-α (ERα) signalling. In the presence of LATS, ERα was targeted for ubiquitination and Ddb1-cullin4-associated-factor 1 (DCAF1)-dependent proteasomal degradation. Absence of LATS stabilized ERα and the Hippo effectors YAP and TAZ (hereafter YAP/TAZ), which together control breast cell fate through intrinsic and paracrine mechanisms. Our findings reveal a non-canonical (that is, YAP/TAZ-independent) effect of LATS in the regulation of human breast cell fate.


Assuntos
Mama/citologia , Mama/enzimologia , Diferenciação Celular , Linhagem da Célula , Receptor alfa de Estrogênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/agonistas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mama/patologia , Proteínas de Transporte/metabolismo , Células Cultivadas , Receptor alfa de Estrogênio/agonistas , Feminino , Genes Supressores de Tumor , Humanos , Fosfoproteínas/agonistas , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteólise , Transdução de Sinais , Fatores de Transcrição , Proteínas Supressoras de Tumor/deficiência , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases , Proteínas de Sinalização YAP
5.
PLoS One ; 8(1): e51671, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23300950

RESUMO

Emerging evidence suggests that some cancers contain a population of stem-like TICs (tumor-initiating cells) and eliminating TICs may offer a new strategy to develop successful anti-cancer therapies. As molecular mechanisms underlying the maintenance of the TIC pool are poorly understood, the development of TIC-specific therapeutics remains a major challenge. We first identified and characterized TICs and non-TICs isolated from a mouse breast cancer model. TICs displayed increased tumorigenic potential, self-renewal, heterogeneous differentiation, and bipotency. Gene expression analysis and immunostaining of TICs and non-TICs revealed that FGFR2 was preferentially expressed in TICs. Loss of FGFR2 impaired self-renewal of TICs, thus resulting in marked decreases in the TIC population and tumorigenic potential. Restoration of FGFR2 rescued the defects in TIC pool maintenance, bipotency, and breast tumor growth driven by FGFR2 knockdown. In addition, pharmacological inhibition of FGFR2 kinase activity led to a decrease in the TIC population which resulted in suppression of breast tumor growth. Moreover, human breast TICs isolated from patient tumor samples were found enriched in a FGFR2+ population that was sufficient to initiate tumor growth. Our data suggest that FGFR2 is essential in sustaining the breast TIC pool through promotion of self-renewal and maintenance of bipotent TICs, and raise the possibility of FGFR2 inhibition as a strategy for anti-cancer therapy by eradicating breast TICs.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Animais/metabolismo , Células-Tronco Neoplásicas/imunologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Antígeno CD24/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Integrina beta1/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Microscopia de Fluorescência , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais
6.
Chem Biol ; 19(8): 955-62, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22884261

RESUMO

Hippo signaling represents a tumor suppressor pathway that regulates organ size and tumorigenesis through phosphorylation and inhibition of the transcription coactivator YAP. Here, we show that serum deprivation dramatically induces YAP Ser127 phosphorylation and cytoplasmic retention, independent of cell-cell contact. Through chemical isolation and activity profiling, we identified serum-derived sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) as small molecule activators of YAP. S1P induces YAP nuclear localization through S1P(2) receptor, Rho GTPase activation, and F-actin polymerization, independent of the core Hippo pathway kinases. Bioinformatics studies also showed that S1P stimulation induces YAP target gene expression in mouse liver and human embryonic stem cells. These results revealed potent small molecule regulators of YAP and suggest that S1P and LPA might modulate cell proliferation and tumorigenesis through YAP activation.


Assuntos
Lisofosfolipídeos/farmacologia , Proteínas Nucleares/metabolismo , Esfingosina/análogos & derivados , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Animais , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Lisofosfolipídeos/sangue , Lisofosfolipídeos/química , Lisofosfolipídeos/isolamento & purificação , Camundongos , Proteínas Nucleares/química , Fosforilação/efeitos dos fármacos , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/sangue , Esfingosina/isolamento & purificação , Esfingosina/farmacologia , Fatores de Transcrição/química , Proteínas rho de Ligação ao GTP/metabolismo
7.
Science ; 334(6061): 1372-7, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22096101

RESUMO

Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration < 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Imidazóis/farmacologia , Fígado/parasitologia , Malária/tratamento farmacológico , Piperazinas/farmacologia , Plasmodium/efeitos dos fármacos , Animais , Antimaláricos/química , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos , Eritrócitos/parasitologia , Humanos , Imidazóis/química , Imidazóis/farmacocinética , Imidazóis/uso terapêutico , Malária/parasitologia , Malária/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Piperazinas/química , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Plasmodium/citologia , Plasmodium/crescimento & desenvolvimento , Plasmodium/fisiologia , Plasmodium berghei/citologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/fisiologia , Plasmodium falciparum/citologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/fisiologia , Plasmodium yoelii/citologia , Plasmodium yoelii/efeitos dos fármacos , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/fisiologia , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Distribuição Aleatória , Bibliotecas de Moléculas Pequenas , Esporozoítos/efeitos dos fármacos , Esporozoítos/crescimento & desenvolvimento
8.
J Biol Chem ; 283(37): 25576-25588, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18641393

RESUMO

The thyroid hormone receptor alpha1 (TRalpha) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T(3)). Previously, we have shown that TRalpha, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRalpha is its ability to exit the nucleus through the nuclear pore complex. TRalpha export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRalpha. We show that, in addition to shuttling in heterokaryons, TRalpha shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRalpha directly interacts with calreticulin, and point to the intriguing possibility that TRalpha follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRalpha from the nucleus to cytoplasm.


Assuntos
Calreticulina/metabolismo , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores alfa dos Hormônios Tireóideos/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Western Blotting , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Ácidos Graxos Insaturados/farmacologia , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Camundongos , Modelos Biológicos , Proteína Exportina 1
9.
Nucl Recept Signal ; 4: e008, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16741566

RESUMO

Nuclear receptors (NRs) are transcription factors whose activity is modulated by ligand binding. These receptors are at the core of complex signaling pathways and act as integrators of many cellular signals. In the last decade our understanding of NRs has greatly evolved. In particular, regulation of NR subcellular dynamics has emerged as central to their activity. Research on the subcellular distribution of the thyroid hormone receptor (TR) has revealed new dimensions in the complexity of NR regulation, and points to the possibility that NR mislocalization plays a key role in oncogenesis. For many years, TR was thought to reside exclusively in the nucleus. It is now known that TR is a dynamic protein that shuttles between the nucleus and cytoplasm. TR is localized to the nucleus in a phosphorylated form, suggesting that compartment-specific phosphorylation mediates cross-talk between multiple cell signaling pathways. The oncoprotein v-ErbA, a viral-derived dominant negative variant of TR is actively exported to the cytoplasm by the CRM1 export receptor. Strikingly, the oncoprotein causes mislocalization of cellular TR and some of its coactivators by direct interaction. Here, we offer some perspectives on the role of subcellular trafficking in the oncogenic conversion of TR, and propose a new model for oncoprotein dominant negative activity.

10.
Mol Endocrinol ; 19(5): 1213-30, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15650025

RESUMO

The retroviral v-ErbA oncoprotein is a highly mutated variant of the thyroid hormone receptor alpha (TRalpha), which is unable to bind T(3) and interferes with the action of TRalpha in mammalian and avian cancer cells. v-ErbA dominant-negative activity is attributed to competition with TRalpha for T(3)-responsive DNA elements and/or auxiliary factors involved in the transcriptional regulation of T(3)-responsive genes. However, competition models do not address the altered subcellular localization of v-ErbA and its possible implications in oncogenesis. Here, we report that v-ErbA dimerizes with TRalpha and the retinoid X receptor and sequesters a significant fraction of the two nuclear receptors in the cytoplasm. Recruitment of TRalpha to the cytoplasm by v-ErbA can be partially reversed in the presence of ligand and when chromatin is disrupted by the histone deacetylase inhibitor trichostatin A. These results define a new mode of action of v-ErbA and illustrate the importance of cellular compartmentalization in transcriptional regulation and oncogenesis.


Assuntos
Neoplasias/metabolismo , Proteínas Oncogênicas v-erbA/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Citoplasma/metabolismo , Dimerização , Histona Desacetilases/metabolismo , Histonas/metabolismo , Carioferinas/metabolismo , Ligantes , Camundongos , Células NIH 3T3 , Proteínas Oncogênicas v-erbA/genética , Transporte Proteico/fisiologia , Receptor X Retinoide beta/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Proteína Exportina 1
11.
J Biol Chem ; 279(15): 15356-67, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-14729678

RESUMO

v-ErbA, an oncogenic derivative of the thyroid hormone receptor alpha (TRalpha) carried by the avian erythroblastosis virus, contains several alterations including fusion of a portion of avian erythroblastosis virus Gag to its N terminus, N- and C-terminal deletions, and 13 amino acid substitutions. Nuclear export of v-ErbA occurs through a CRM1-mediated pathway. In contrast, nuclear export of TRalpha and another isoform, TRbeta, is CRM1-independent. To determine which amino acid changes in v-ErbA confer CRM1-dependent nuclear export, we expressed a panel of green and yellow fluorescent protein-tagged mutant and chimeric proteins in mammalian cells. The sensitivity of subcellular trafficking of these mutants to leptomycin B (LMB), a specific inhibitor of CRM1, was assessed by fluorescence microscopy. Our data showed that a nuclear export sequence resides within a 70-amino acid domain in the C-terminal portion of the p10 region of Gag, and in vitro binding assays demonstrated that Gag interacts directly with CRM1. However, a panel of ligand-binding domain mutants of v-ErbA lacking the Gag sequence exhibited greater nuclear localization in the presence of LMB, suggesting that the various amino acid substitutions/deletions may cause a conformation shift, unmasking an additional CRM1-dependent nuclear export sequence. In contrast, the altered DNA-binding domain of the oncoprotein did not contribute to CRM1-dependent nuclear export. Heterokaryon experiments revealed that v-ErbA did not undergo nucleocytoplasmic shuttling when the CRM1 export pathway was blocked by LMB treatment, suggesting that the ability to follow the export pathway used by TRalpha has been lost by the oncoprotein during its evolution. Our findings thus point to the intriguing possibility that acquisition of altered nuclear export capabilities contributes to the oncogenic properties of v-ErbA.


Assuntos
Transporte Ativo do Núcleo Celular , Carioferinas/fisiologia , Proteínas Oncogênicas v-erbA/fisiologia , Receptores Citoplasmáticos e Nucleares , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Ácidos Graxos Insaturados/química , Deleção de Genes , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Carioferinas/química , Carioferinas/metabolismo , Ligantes , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Células NIH 3T3 , Proteínas Oncogênicas v-erbA/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Transfecção , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA