Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 39(1): 2366236, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38905127

RESUMO

A novel class of compounds designed to hit two anti-tumour targets, G-quadruplex structures and human carbonic anhydrases (hCAs) IX and XII is proposed. The induction/stabilisation of G-quadruplex structures by small molecules has emerged as an anticancer strategy, disrupting telomere maintenance and reducing oncogene expression. hCAs IX and XII are well-established anti-tumour targets, upregulated in many hypoxic tumours and contributing to metastasis. The ligands reported feature a berberine G-quadruplex stabiliser scaffold connected to a moiety inhibiting hCAs IX and XII. In vitro experiments showed that our compounds selectively stabilise G-quadruplex structures and inhibit hCAs IX and XII. The crystal structure of a telomeric G-quadruplex in complex with one of these ligands was obtained, shedding light on the ligand/target interaction mode. The most promising ligands showed significant cytotoxicity against CA IX-positive HeLa cancer cells in hypoxia, and the ability to stabilise G-quadruplexes within tumour cells.


Assuntos
Antineoplásicos , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Quadruplex G , Humanos , Quadruplex G/efeitos dos fármacos , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Anidrases Carbônicas/metabolismo , Proliferação de Células/efeitos dos fármacos , Ligantes , Células HeLa , Antígenos de Neoplasias/metabolismo , Modelos Moleculares
2.
ChemMedChem ; : e202400197, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923747

RESUMO

A series of thirteen cyclic sulfonyl guanidines were prepared and evaluated against tumor-associated human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA IX and hCA XII, as well as against off-target cytosolic isoforms hCA I and hCA II. The compounds reported here were generally inactive against both off-target isoforms (KI>100 µM), while all of them moderately inhibited both target isoforms hCA IX and XII in the submicromolar to micromolar ranges in which KI values spanned from 0.57 to 8.4 µM against hCA IX and from 0.34 to 9.7 against hCA XII. Due to the notable selectivity of the title compounds toward isoforms hCA IX and XII, they can be considered as useful scaffolds for further chemical optimization to develop new highly selective antitumor agents.

3.
J Med Chem ; 67(5): 4170-4193, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38436571

RESUMO

We report here the first dual inhibitors of brain carbonic anhydrases (CAs) and monoamine oxidase-B (MAO-B) for the management of Alzheimer's disease. Classical CA inhibitors (CAIs) such as methazolamide prevent amyloid-ß-peptide (Aß)-induced overproduction of reactive oxygen species (ROS) and mitochondrial dysfunction. MAO-B is also implicated in ROS production, cholinergic system disruption, and amyloid plaque formation. In this work, we combined a reversible MAO-B inhibitor of the coumarin and chromone type with benzenesulfonamide fragments as highly effective CAIs. A hit-to-lead optimization led to a significant set of derivatives showing potent low nanomolar inhibition of the target brain CAs (KIs in the range of 0.1-90.0 nM) and MAO-B (IC50 in the range of 6.7-32.6 nM). Computational studies were conducted to elucidate the structure-activity relationship and predict ADMET properties. The most effective multitarget compounds totally prevented Aß-related toxicity, reverted ROS formation, and restored the mitochondrial functionality in an SH-SY5Y cell model surpassing the efficacy of single-target drugs.


Assuntos
Doença de Alzheimer , Anidrases Carbônicas , Doenças Mitocondriais , Neuroblastoma , Humanos , Monoaminoxidase/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Peptídeos beta-Amiloides/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade , Estresse Oxidativo , Encéfalo/metabolismo
4.
Arch Pharm (Weinheim) ; 357(7): e2400038, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38498884

RESUMO

A novel series of sulfonamide-incorporated bis(α-aminophosphonates) acting as effective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors is reported. The synthesized bivalent ligands were tested against five human (h) isoforms, hCA I, hCA II, hCA VII, hCA IX, and hCA XIII. Such derivatives showed high activity and selectivity against the cancer-related, membrane-bound isoform hCA IX, and among them, compound 5h, tetraisopropyl (1,3-phenylenebis{[(4-sulfamoylphenyl)amino]methylene})bis(phosphonate) showed a KI of 15.1 nM, being highly selective against this isoform over all other investigated ones (hCA I/IX = 42; hCA II/IX = 6, hCA VII/IX = 3, hCA XIII/IX = 5). Therefore, compound 5h could be a potential lead for the development of selective anticancer agents. The newly developed sulfonamides were also found effective inhibitors against the cytosolic hCA XIII isoform. Compound 5i displayed the best inhibition against this isoform with a KI of 17.2 nM, equal to that of the well-known inhibitor acetazolamide (AAZ), but significantly more selective over all other tested isoforms (hCA I/XIII = 239; hCA II/XIII = 23, hCA VII/XIII = 2, hCA IX/XIII = 3) compared to AAZ.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Desenho de Fármacos , Sulfonamidas , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Humanos , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Relação Estrutura-Atividade , Anidrases Carbônicas/metabolismo , Cristalografia por Raios X , Estrutura Molecular , Isoenzimas/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Organofosfonatos/farmacologia , Organofosfonatos/química , Organofosfonatos/síntese química , Relação Dose-Resposta a Droga
5.
J Med Chem ; 67(4): 3018-3038, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38301036

RESUMO

New dihydro-pyrrol-2-one compounds, featuring dual sulfonamide groups, were synthesized through a one-pot, three-component approach utilizing trifluoroacetic acid as a catalyst. Computational analysis using density functional theory (DFT) and condensed Fukui function explored the structure-reactivity relationship. Evaluation against human carbonic anhydrase isoforms (hCA I, II, IX, XII) revealed potent inhibition. The widely expressed cytosolic hCA I was inhibited across a range of concentrations (KI 3.9-870.9 nM). hCA II, also cytosolic, exhibited good inhibition as well. Notably, all compounds effectively inhibited tumor-associated hCA IX (KI 1.9-211.2 nM) and hCA XII (low nanomolar). Biological assessments on MCF7 cancer cells highlighted the compounds' ability, in conjunction with doxorubicin, to significantly impact tumor cell viability. These findings underscore the potential therapeutic relevance of the synthesized compounds in cancer treatment.


Assuntos
Anidrases Carbônicas , Neoplasias , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Anidrase Carbônica IX , Relação Estrutura-Atividade , Anidrases Carbônicas/metabolismo , Isoformas de Proteínas , Estrutura Molecular , Antígenos de Neoplasias
6.
ChemMedChem ; 19(4): e202300626, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38193633

RESUMO

This study introduces a series of ten hybrid molecules DK(1-10), which combine diazo and coumarin moieties along with diverse aromatic substitutions. The primary objective was to evaluate the inhibitory capabilities of these compounds against four prominent isoforms: the cytosolic hCA I and II, as well as the tumor-associated membrane-bound hCA IX and XII. Impressively, the majority of the tested compounds exhibited significant inhibition activity against the tumor-associated isoforms hCA IX and XII, with KI values ranging from 29.2 to 293.3 nM. Notably, compound DK-8 displayed particularly robust inhibitory activity against the tumor-associated membrane-bound isoforms, hCA IX and XII, yielding KI values of 32.5 and 29.2 nM, respectively. Additionally, another derivative, DK-9, containing a primary sulfonamide, exhibited notable inhibition against hCA XII with a KI value of 36.4 nM. This investigation aimed to explore the structure-activity relationships within these compounds, shedding light on how various substitutions and structural components influence their inhibitory potential. As a result, these compounds present promising candidates for further exploration in medicinal and pharmacological research. Their ability to selectively inhibit specific isoforms, particularly those associated with hypoxic tumors, suggests their potential as foundational compounds for the development of novel therapeutic agents.


Assuntos
Anidrases Carbônicas , Neoplasias , Humanos , Anidrases Carbônicas/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Isoenzimas , Anidrase Carbônica IX/metabolismo , Neoplasias/patologia , Relação Estrutura-Atividade , Antígenos de Neoplasias , Cumarínicos/farmacologia , Cumarínicos/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA