Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(706): eadd1014, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37494470

RESUMO

Optogenetics is a widely used technology with potential for translational research. A critical component of such applications is the ability to track the location of the transduced opsin in vivo. To address this problem, we engineered an excitatory opsin, ChRERα (hChR2(134R)-V5-ERα-LBD), that could be visualized using positron emission tomography (PET) imaging in a noninvasive, longitudinal, and quantitative manner. ChRERα consists of the prototypical excitatory opsin channelrhodopsin-2 (ChR2) and the ligand-binding domain (LBD) of the human estrogen receptor α (ERα). ChRERα showed conserved ChR2 functionality and high affinity for [18F]16α-fluoroestradiol (FES), an FDA-approved PET radiopharmaceutical. Experiments in rats demonstrated that adeno-associated virus (AAV)-mediated expression of ChRERα enables neural circuit manipulation in vivo and that ChRERα expression could be monitored using FES-PET imaging. In vivo experiments in nonhuman primates (NHPs) confirmed that ChRERα expression could be monitored at the site of AAV injection in the primary motor cortex and in long-range neuronal terminals for up to 80 weeks. The anatomical connectivity map of the primary motor cortex identified by FES-PET imaging of ChRERα expression overlapped with a functional connectivity map identified using resting state fMRI in a separate cohort of NHPs. Overall, our results demonstrate that ChRERα expression can be mapped longitudinally in the mammalian brain using FES-PET imaging and can be used for neural circuit modulation in vivo.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Ratos , Humanos , Animais , Feminino , Receptor alfa de Estrogênio/metabolismo , Opsinas/metabolismo , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Primatas , Estradiol/metabolismo , Neoplasias da Mama/metabolismo , Mamíferos/metabolismo
2.
Brain Commun ; 4(6): fcac291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440101

RESUMO

Nicotine exposure is associated with regional changes in brain nicotinic acetylcholine receptors subtype expression patterns as a function of dose and age at the time of exposure. Moreover, nicotine dependence is associated with changes in brain circuit functional connectivity, but the relationship between such connectivity and concomitant regional distribution changes in nicotinic acetylcholine receptor subtypes following nicotine exposure is not understood. Although smoking typically begins in adolescence, developmental changes in brain circuits and nicotinic acetylcholine receptors following chronic nicotine exposure remain minimally investigated. Here, we combined in vitro nicotinic acetylcholine receptor autoradiography with resting state functional magnetic resonance imaging to measure changes in [3H]nicotine binding and α4ß2 subtype nicotinic acetylcholine receptor binding and circuit connectivity across the brain in adolescent (postnatal Day 33) and adult (postnatal Day 68) rats exposed to 6 weeks of nicotine administration (0, 1.2 and 4.8 mg/kg/day). Chronic nicotine exposure increased nicotinic acetylcholine receptor levels and induced discrete, developmental stage changes in regional nicotinic acetylcholine receptor subtype distribution. These effects were most pronounced in striatal, thalamic and cortical regions when nicotine was administered during adolescence but not in adults. Using these regional receptor changes as seeds, resting state functional magnetic resonance imaging identified dysregulations in cortico-striatal-thalamic-cortical circuits that were also dysregulated following adolescent nicotine exposure. Thus, nicotine-induced increases in cortical, striatal and thalamic nicotinic acetylcholine receptors during adolescence modifies processing and brain circuits within cortico-striatal-thalamic-cortical loops, which are known to be crucial for multisensory integration, action selection and motor output, and may alter the developmental trajectory of the adolescent brain. This unique multimodal study significantly advances our understanding of nicotine dependence and its effects on the adolescent brain.

3.
Sci Adv ; 8(48): eadd4150, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449624

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein binds angiotensin-converting enzyme 2 as its primary infection mechanism. Interactions between S and endogenous proteins occur after infection but are not well understood. We profiled binding of S against >9000 human proteins and found an interaction between S and human estrogen receptor α (ERα). Using bioinformatics, supercomputing, and experimental assays, we identified a highly conserved and functional nuclear receptor coregulator (NRC) LXD-like motif on the S2 subunit. In cultured cells, S DNA transfection increased ERα cytoplasmic accumulation, and S treatment induced ER-dependent biological effects. Non-invasive imaging in SARS-CoV-2-infected hamsters localized lung pathology with increased ERα lung levels. Postmortem lung experiments from infected hamsters and humans confirmed an increase in cytoplasmic ERα and its colocalization with S in alveolar macrophages. These findings describe the discovery of a S-ERα interaction, imply a role for S as an NRC, and advance knowledge of SARS-CoV-2 biology and coronavirus disease 2019 pathology.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Cricetinae , Humanos , Receptores de Estrogênio , Receptor alfa de Estrogênio , SARS-CoV-2
4.
bioRxiv ; 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35665018

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein binds angiotensin-converting enzyme 2 (ACE2) at the cell surface, which constitutes the primary mechanism driving SARS-CoV-2 infection. Molecular interactions between the transduced S and endogenous proteins likely occur post-infection, but such interactions are not well understood. We used an unbiased primary screen to profile the binding of full-length S against >9,000 human proteins and found significant S-host protein interactions, including one between S and human estrogen receptor alpha (ERα). After confirming this interaction in a secondary assay, we used bioinformatics, supercomputing, and experimental assays to identify a highly conserved and functional nuclear receptor coregulator (NRC) LXD-like motif on the S2 subunit and an S-ERα binding mode. In cultured cells, S DNA transfection increased ERα cytoplasmic accumulation, and S treatment induced ER-dependent biological effects and ACE2 expression. Noninvasive multimodal PET/CT imaging in SARS-CoV-2-infected hamsters using [ 18 F]fluoroestradiol (FES) localized lung pathology with increased ERα lung levels. Postmortem experiments in lung tissues from SARS-CoV-2-infected hamsters and humans confirmed an increase in cytoplasmic ERα expression and its colocalization with S protein in alveolar macrophages. These findings describe the discovery and characterization of a novel S-ERα interaction, imply a role for S as an NRC, and are poised to advance knowledge of SARS-CoV-2 biology, COVID-19 pathology, and mechanisms of sex differences in the pathology of infectious disease.

5.
Curr Neuropharmacol ; 20(6): 1035-1045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34736381

RESUMO

G protein-coupled receptors (GPCRs) constitute the largest group of membrane receptor proteins controlling brain activity. Accordingly, GPCRs are the main target of commercial drugs for most neurological and neuropsychiatric disorders. One of the mechanisms by which GPCRs regulate neuronal function is by homo- and heteromerization, with the establishment of direct protein-protein interactions between the same and different GPCRs. The occurrence of GPCR homo- and heteromers in artificial systems is generally well accepted, but more specific methods are necessary to address GPCR oligomerization in the brain. Here, we revise some of the techniques that have mostly contributed to reveal GPCR oligomers in native tissue, which include immunogold electron microscopy, proximity ligation assay (PLA), resonance energy transfer (RET) between fluorescent ligands and the Amplified Luminescent Proximity Homogeneous Assay (ALPHA). Of note, we use the archetypical GPCR oligomer, the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer as an example to illustrate the implementation of these techniques, which can allow visualizing GPCR oligomers in the human brain under normal and pathological conditions. Indeed, GPCR oligomerization may be involved in the pathophysiology of neurological and neuropsychiatric disorders.


Assuntos
Receptores Dopaminérgicos , Receptores Acoplados a Proteínas G , Adenosina , Encéfalo/metabolismo , Humanos , Ligantes , Receptores Dopaminérgicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
Am J Respir Crit Care Med ; 203(1): 102-110, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673075

RESUMO

Rationale: Obstructive sleep apnea is recurrent upper airway obstruction caused by a loss of upper airway muscle tone during sleep. The main goal of our study was to determine if designer receptors exclusively activated by designer drugs (DREADD) could be used to activate the genioglossus muscle as a potential novel treatment strategy for sleep apnea. We have previously shown that the prototypical DREADD ligand clozapine-N-oxide increased pharyngeal diameter in mice expressing DREADD in the hypoglossal nucleus. However, the need for direct brainstem viral injections and clozapine-N-oxide toxicity diminished translational potential of this approach, and breathing during sleep was not examined.Objectives: Here, we took advantage of our model of sleep-disordered breathing in diet-induced obese mice, retrograde properties of the adeno-associated virus serotype 9 (AAV9) viral vector, and the novel DREADD ligand J60.Methods: We administered AAV9-hSyn-hM3(Gq)-mCherry or control AAV9 into the genioglossus muscle of diet-induced obese mice and examined the effect of J60 on genioglossus activity, pharyngeal patency, and breathing during sleep.Measurements and Main Results: Compared with control, J60 increased genioglossus tonic activity by greater than sixfold and tongue uptake of 2-deoxy-2-[18F]fluoro-d-glucose by 1.5-fold. J60 increased pharyngeal patency and relieved upper airway obstruction during non-REM sleep.Conclusions: We conclude that following intralingual administration of AAV9-DREADD, J60 can activate the genioglossus muscle and improve pharyngeal patency and breathing during sleep.


Assuntos
Drogas Desenhadas/uso terapêutico , Nervo Hipoglosso/efeitos dos fármacos , Músculos Faríngeos/efeitos dos fármacos , Receptores de Droga/efeitos dos fármacos , Respiração/efeitos dos fármacos , Apneia Obstrutiva do Sono/tratamento farmacológico , Apneia Obstrutiva do Sono/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
7.
Science ; 364(6436)2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30872534

RESUMO

Chemogenetics enables noninvasive chemical control over cell populations in behaving animals. However, existing small-molecule agonists show insufficient potency or selectivity. There is also a need for chemogenetic systems compatible with both research and human therapeutic applications. We developed a new ion channel-based platform for cell activation and silencing that is controlled by low doses of the smoking cessation drug varenicline. We then synthesized subnanomolar-potency agonists, called uPSEMs, with high selectivity for the chemogenetic receptors. uPSEMs and their receptors were characterized in brains of mice and a rhesus monkey by in vivo electrophysiology, calcium imaging, positron emission tomography, behavioral efficacy testing, and receptor counterscreening. This platform of receptors and selective ultrapotent agonists enables potential research and clinical applications of chemogenetics.


Assuntos
Células Quimiorreceptoras/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Agentes de Cessação do Hábito de Fumar/farmacologia , Vareniclina/análogos & derivados , Vareniclina/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Animais , Células Quimiorreceptoras/fisiologia , Engenharia Genética , Haplorrinos , Humanos , Ligantes , Camundongos , Mutação , Domínios Proteicos , Receptores de Glicina/agonistas , Receptores de Glicina/genética , Receptores 5-HT3 de Serotonina/genética , Tropizetrona/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/genética
8.
J Clin Invest ; 128(7): 3160-3170, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29911992

RESUMO

It is critical for survival to assign positive or negative valence to salient stimuli in a correct manner. Accordingly, harmful stimuli and internal states characterized by perturbed homeostasis are accompanied by discomfort, unease, and aversion. Aversive signaling causes extensive suffering during chronic diseases, including inflammatory conditions, cancer, and depression. Here, we investigated the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice and a behavioral test in which mice avoid an environment that they have learned to associate with aversive stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain, and κ opioid receptor-induced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference or indifference toward the aversive stimuli. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were reexpressed on dopamine D1 receptor-expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in an MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.


Assuntos
Corpo Estriado/fisiologia , Motivação/fisiologia , Receptor Tipo 4 de Melanocortina/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Benzazepinas/administração & dosagem , Corpo Estriado/efeitos dos fármacos , Dopamina/fisiologia , Antagonistas de Dopamina/administração & dosagem , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pró-Opiomelanocortina/fisiologia , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/fisiologia , Recompensa
9.
Front Pharmacol ; 9: 243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686613

RESUMO

The central adenosine system and adenosine receptors play a fundamental role in the modulation of dopaminergic neurotransmission. This is mostly achieved by the strategic co-localization of different adenosine and dopamine receptor subtypes in the two populations of striatal efferent neurons, striatonigral and striatopallidal, that give rise to the direct and indirect striatal efferent pathways, respectively. With optogenetic techniques it has been possible to dissect a differential role of the direct and indirect pathways in mediating "Go" responses upon exposure to reward-related stimuli and "NoGo" responses upon exposure to non-rewarded or aversive-related stimuli, respectively, which depends on their different connecting output structures and their differential expression of dopamine and adenosine receptor subtypes. The striatopallidal neuron selectively expresses dopamine D2 receptors (D2R) and adenosine A2A receptors (A2AR), and numerous experiments using multiple genetic and pharmacological in vitro, in situ and in vivo approaches, demonstrate they can form A2AR-D2R heteromers. It was initially assumed that different pharmacological interactions between dopamine and adenosine receptor ligands indicated the existence of different subpopulations of A2AR and D2R in the striatopallidal neuron. However, as elaborated in the present essay, most evidence now indicates that all interactions can be explained with a predominant population of striatal A2AR-D2R heteromers forming complexes with adenylyl cyclase subtype 5 (AC5). The A2AR-D2R heteromer has a tetrameric structure, with two homodimers, which allows not only multiple allosteric interactions between different orthosteric ligands, agonists, and antagonists, but also the canonical Gs-Gi antagonistic interaction at the level of AC5. We present a model of the function of the A2AR-D2R heterotetramer-AC5 complex, which acts as an integrative device of adenosine and dopamine signals that determine the excitability and gene expression of the striatopallidal neurons. The model can explain most behavioral effects of A2AR and D2R ligands, including the psychostimulant effects of caffeine. The model is also discussed in the context of different functional striatal compartments, mainly the dorsal and the ventral striatum. The current accumulated knowledge of the biochemical properties of the A2AR-D2R heterotetramer-AC5 complex offers new therapeutic possibilities for Parkinson's disease, schizophrenia, SUD and other neuropsychiatric disorders with dysfunction of dorsal or ventral striatopallidal neurons.

10.
Neuropharmacology ; 111: 160-168, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27600688

RESUMO

Deficits of sensorimotor integration with periodic limb movements during sleep (PLMS) and hyperarousal and sleep disturbances in Restless Legs Syndrome (RLS) constitute two pathophysiologically distinct but interrelated clinical phenomena, which seem to depend mostly on alterations in dopaminergic and glutamatergic neurotransmission, respectively. Brain iron deficiency is considered as a main pathogenetic mechanism in RLS. Rodents with brain iron deficiency represent a valuable pathophysiological model of RLS, although they do not display motor disturbances. Nevertheless, they develop the main neurochemical dopaminergic changes found in RLS, such as decrease in striatal dopamine D2 receptor density. On the other hand, brain iron deficient mice exhibit the characteristic pattern of hyperarousal in RLS, providing a tool to find the link between brain iron deficiency and sleep disturbances in RLS. The present study provides evidence for a role of the endogenous sleep-promoting factor adenosine. Three different experimental preparations, long-term (22 weeks) severe or moderate iron-deficient (ID) diets (3- or 7-ppm iron diet) in mice and short-term (3 weeks) severe ID diet (3-ppm iron diet) in rats, demonstrated a significant downregulation (Western blotting in mouse and radioligand binding saturation experiments in rat brain tissue) of adenosine A1 receptors (A1R) in the cortex and striatum, concomitant to striatal D2R downregulation. On the other hand, the previously reported upregulation of adenosine A2A receptors (A2AR) was only observed with severe ID in both mice and rats. The results suggest a key role for A1R downregulation in the PLMS and hyperarousal in RLS.


Assuntos
Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Deficiências de Ferro , Receptor A1 de Adenosina/metabolismo , Receptores A2 de Adenosina/metabolismo , Síndrome das Pernas Inquietas/metabolismo , Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Sítios de Ligação , Antagonistas dos Receptores de Dopamina D2/farmacologia , Regulação para Baixo , Ferritinas/sangue , Ferro/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo
11.
Neurobiol Dis ; 96: 47-53, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27567601

RESUMO

The initial goal of this study was to investigate alterations in adenosine A2A receptor (A2AR) density or function in a rat model of Huntington disease (HD) with reported insensitivity to an A2AR antagonist. Unsuspected negative results led to the hypothesis of a low striatal adenosine tone and to the search for the mechanisms involved. Extracellular striatal concentrations of adenosine were measured with in vivo microdialysis in two rodent models of early neuropathological stages of HD disease, the Tg51 rat and the zQ175 knock-in mouse. In view of the crucial role of the equilibrative nucleoside transporter (ENT1) in determining extracellular content of adenosine, the binding properties of the ENT1 inhibitor [3H]-S-(4-Nitrobenzyl)-6-thioinosine were evaluated in zQ175 mice and the differential expression and differential coexpression patterns of the ENT1 gene (SLC29A1) were analyzed in a large human cohort of HD disease and controls. Extracellular striatal levels of adenosine were significantly lower in both animal models as compared with control littermates and striatal ENT1 binding sites were significantly upregulated in zQ175 mice. ENT1 transcript was significantly upregulated in HD disease patients at an early neuropathological severity stage, but not those with a higher severity stage, relative to non-demented controls. ENT1 transcript was differentially coexpressed (gained correlations) with several other genes in HD disease subjects compared to the control group. The present study demonstrates that ENT1 and adenosine constitute biomarkers of the initial stages of neurodegeneration in HD disease and also predicts that ENT1 could constitute a new therapeutic target to delay the progression of the disease.


Assuntos
Biomarcadores/metabolismo , Corpo Estriado/metabolismo , Regulação da Expressão Gênica/genética , Doença de Huntington/patologia , Proteínas de Transporte de Nucleosídeos/metabolismo , Córtex Pré-Frontal/metabolismo , Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Huntingtina/genética , Doença de Huntington/complicações , Doença de Huntington/genética , Locomoção/genética , Transtornos Psicomotores/tratamento farmacológico , Transtornos Psicomotores/etiologia , Purinas/uso terapêutico , Ratos , Ratos Transgênicos , Receptor A2A de Adenosina/metabolismo , Triazinas/farmacocinética , Triazóis/farmacocinética , Expansão das Repetições de Trinucleotídeos/genética , Trítio/farmacocinética
12.
Biochem Soc Trans ; 44(2): 595-600, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27068975

RESUMO

Heteromers of G-protein-coupled receptors (GPCRs) have emerged as potential novel targets for drug development. Accumulating evidence indicates that GPCRs can form homodimers and heteromers, with homodimers being the predominant species and oligomeric receptors being formed as multiples of dimers. Recently, heterotetrameric structures have been proposed for dopamine D1receptor (D1R)-dopamine D3receptor (D3R) and adenosine A2Areceptor (A2AR)-dopamine D2receptor (D2R) heteromers. The structural model proposed for these complexes is a heteromer constituted by two receptor homodimers. The existence of GPCR homodimers and heteromers provides a structural basis for inter-protomer allosteric mechanisms that might account for a multiplicity of unique pharmacological properties. In this review, we focus on the A2AR-D2R heterotetramer as an example of an oligomeric structure that is key in the modulation of striatal neuronal function. We also review the interfaces involved in this and other recently reported heteromers of GPCRs. Furthermore, we discuss several published studies showing theex vivoexpression of A2AR-D2R heteromers. The ability of A2AR agonists to decrease the affinity of D2R agonists has been reported and, on the basis of this interaction, A2AR antagonists have been proposed as potential drugs for the treatment of Parkinson's disease. The heterotetrameric structure of the A2AR-D2R complex offers a novel model that can provide new clues about how to adjust the drug dosage to the expected levels of endogenous adenosine.


Assuntos
Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo , Regulação Alostérica , Dimerização , Humanos , Ligantes , Estrutura Molecular , Receptor A2A de Adenosina/química , Receptores de Dopamina D2/química
13.
Neuropharmacology ; 104: 154-60, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26051403

RESUMO

The structure constituted by a G protein coupled receptor (GPCR) homodimer and a G protein provides a main functional unit and oligomeric entities can be viewed as multiples of dimers. For GPCR heteromers, experimental evidence supports a tetrameric structure, comprised of two different homodimers, each able to signal with its preferred G protein. GPCR homomers and heteromers can act as the conduit of allosteric interactions between orthosteric ligands. The well-known agonist/agonist allosteric interaction in the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer, by which A2AR agonists decrease the affinity of D2R agonists, gave the first rationale for the use of A2AR antagonists in Parkinson's disease. We review new pharmacological findings that can be explained in the frame of a tetrameric structure of the A2AR-D2R heteromer: first, ligand-independent allosteric modulations by the D2R that result in changes of the binding properties of A2AR ligands; second, differential modulation of the intrinsic efficacy of D2R ligands for G protein-dependent and independent signaling; third, the canonical antagonistic Gs-Gi interaction within the frame of the heteromer; and fourth, the ability of A2AR antagonists, including caffeine, to also exert the same allosteric modulations of D2R ligands than A2AR agonists, while A2AR agonists and antagonists counteract each other's effects. These findings can have important clinical implications when evaluating the use of A2AR antagonists. They also call for the need of monitoring caffeine intake when evaluating the effect of D2R ligands, when used as therapeutic agents in neuropsychiatric disorders or as probes in imaging studies. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.


Assuntos
Regulação Alostérica , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cafeína/metabolismo , Cafeína/farmacologia , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica , Multimerização Proteica , Transdução de Sinais
14.
Proc Natl Acad Sci U S A ; 112(27): E3609-18, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100888

RESUMO

Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.


Assuntos
Corpo Estriado/metabolismo , Multimerização Proteica , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo , Agonistas do Receptor A2 de Adenosina/metabolismo , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Ligação Competitiva/efeitos dos fármacos , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Células CHO , Cricetinae , Cricetulus , Agonistas de Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2/metabolismo , Antagonistas dos Receptores de Dopamina D2/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Cinética , Masculino , Microscopia Confocal , Ligação Proteica/efeitos dos fármacos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/química , Receptores de Dopamina D2/química , Ovinos , Fatores de Tempo
15.
Eur J Med Chem ; 97: 173-80, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25969169

RESUMO

Ligands acting at multiple dopamine receptors hold potential as therapeutic agents for a number of neurodegenerative disorders. Specifically, compounds able to bind at D1R and D2R with high affinity could restore the effects of dopamine depletion and enhance motor activation on degenerated nigrostriatal dopaminergic systems. We have directed our research towards the synthesis and characterisation of heterocycle-peptide hybrids based on the indolo[2,3-a]quinolizidine core. This privileged structure is a water-soluble and synthetically accessible scaffold with affinity for diverse GPCRs. Herein we have prepared a solid-phase combinatorial library of 80 indoloquinolizidine-peptides to identify compounds with enhanced binding affinity at D2R, a receptor that is crucial to re-establish activity on dopamine-depleted degenerated GABAergic neurons. We applied computational tools and high-throughput screening assays to identify 9a{1,3,3} as a ligand for dopamine receptors with nanomolar affinity and agonist activity at D2R. Our results validate the application of indoloquinolizidine-peptide combinatorial libraries to fine-tune the pharmacological profiles of multiple ligands at D1 and D2 dopamine receptors.


Assuntos
Desenho de Fármacos , Peptídeos/síntese química , Quinolizidinas/síntese química , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D2/agonistas , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação , Células CHO , Técnicas de Química Combinatória , Cricetulus , Indóis , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/farmacologia , Quinolizidinas/química , Quinolizidinas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
16.
Exp Neurol ; 253: 180-91, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24412491

RESUMO

Long-term therapy with L-3,4-dihydroxyphenylalanine (L-DOPA), still the most effective treatment in Parkinson's disease (PD), is associated with severe motor complications such as dyskinesia. Experimental and clinical data have indicated that adenosine A2A receptor antagonists can provide symptomatic improvement by potentiating L-DOPA efficacy and minimizing its side effects. It is known that the G-protein-coupled adenosine A2A, cannabinoid CB1 and dopamine D2 receptors may interact and form functional A2A-CB1-D2 receptor heteromers in co-transfected cells as well as in rat striatum. These data suggest that treatment with a combination of drugs or a single compound selectively acting on A2A-CB1-D2 heteromers may represent an alternative therapeutic treatment of PD. We investigated the expression of A2A-CB1-D2 receptor heteromers in the striatum of both naïve and hemiparkinsonian rats (HPD-rats) bearing a unilateral 6-hydroxydopamine (6-OHDA) lesion, and assessed how receptor heteromer expression and biochemical properties were affected by L-DOPA treatment. Radioligand binding data showed that A2A-CB1-D2 receptor heteromers are present in the striatum of both naïve and HPD-rats. However, behavioral results indicated that the combined administration of A2A (MSX-3 or SCH58261) and CB1 (rimonabant) receptor antagonists, in the presence of L-DOPA does not produce a response different from administration of the A2A receptor antagonist alone. These behavioral results prompted identification of heteromers in L-DOPA-treated animals. Interestingly, the radioligand binding results in samples from lesioned animals suggest that the heteromer is lost following acute or chronic treatment with L-DOPA.


Assuntos
Antiparkinsonianos/farmacologia , Corpo Estriado/metabolismo , Lateralidade Funcional/efeitos dos fármacos , Levodopa/farmacologia , Transtornos Parkinsonianos/patologia , Receptor Cross-Talk/fisiologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Inibidores da Colinesterase/toxicidade , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Lateralidade Funcional/fisiologia , Masculino , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Piperidinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor Cross-Talk/efeitos dos fármacos , Rimonabanto , Tacrina/toxicidade , Fatores de Tempo , Tremor/induzido quimicamente
17.
Neuropharmacology ; 79: 90-100, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24230991

RESUMO

The molecular basis of priming for L-DOPA-induced dyskinesias in Parkinson's disease (PD), which depends on the indirect pathway of motor control, is not known. In rodents, the indirect pathway contains striatopallidal GABAergic neurons that express heterotrimers composed of A(2A) adenosine, CB(1) cannabinoid and D(2) dopamine receptors that regulate dopaminergic neurotransmission. The present study was designed to investigate the expression of these heteromers in the striatum of a primate model of Parkinson's disease and to determine whether their expression and pharmacological properties are altered upon L-DOPA treatment. By using the recently developed in situ proximity ligation assay and by identification of a biochemical fingerprint, we discovered a regional distribution of A(2A)/CB(1) /D(2) receptor heteromers that predicts differential D(2)-mediated neurotransmission in the caudate-putamen of Macaca fascicularis. Whereas heteromers were abundant in the caudate nucleus of both naïve and MPTP-treated monkeys, L-DOPA treatment blunted the biochemical fingerprint and led to weak heteromer expression. These findings constitute the first evidence of altered receptor heteromer expression in pathological conditions and suggest that drugs targeting A(2A)-CB(1) -D(2) receptor heteromers may be successful to either normalize basal ganglia output or prevent L-DOPA-induced side effects.


Assuntos
Antiparkinsonianos/farmacologia , Núcleo Caudado/efeitos dos fármacos , Levodopa/farmacologia , Receptor A2A de Adenosina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptores de Dopamina D2/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Núcleo Caudado/metabolismo , Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Macaca fascicularis , Masculino , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Putamen/efeitos dos fármacos , Putamen/metabolismo , Receptor CB1 de Canabinoide/agonistas
18.
Biochem Pharmacol ; 78(12): 1456-63, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19643089

RESUMO

Many G-protein-coupled receptors (GPCRs) are expressed on the plasma membrane as dimers. Since drug binding data are currently fitted using equations developed for monomeric receptors, the interpretation of the pharmacological data are equivocal in many cases. As reported here, GPCR dimer models account for changes in competition curve shape as a function of the radioligand concentration used, something that cannot be explained by monomeric receptor models. Macroscopic equilibrium dissociation constants for the agonist and homotropic cooperativity index reflecting the intramolecular communication within the dopamine D1 or adenosine A2A receptor homodimer as well as hybrid equilibrium dissociation constant, which reflects the antagonist/agonist modulation may be calculated by fitting binding data from antagonist/agonist competition experiments to equations developed from dimer receptor models. Comparing fitting the data by assuming a classical monomeric receptor model or a dimer model, it is shown that dimer receptor models provide more clues useful in drug discovery than monomer-based models.


Assuntos
Ligação Competitiva/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Benzazepinas/farmacologia , Agonistas de Dopamina/farmacologia , Descoberta de Drogas/métodos , Modelos Biológicos , Fenetilaminas/farmacologia , Ensaio Radioligante , Receptor A2A de Adenosina/efeitos dos fármacos , Receptores de Dopamina D1/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA