Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1869(11): 119329, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35905788

RESUMO

Cardiac fibrosis is associated with increased stiffness of the myocardial extracellular matrix (ECM) in part mediated by increased cardiac fibroblast proliferation However, our understanding of the mechanisms regulating cardiac fibroblast proliferation are incomplete. Here we characterise a novel mechanism involving a combined activation of Yes-associated protein (YAP) targets RUNX Family Transcription Factor 2 (RUNX2) and TEA Domain Transcription Factor (TEAD). We demonstrate that cardiac fibroblast proliferation is enhanced by interaction with a stiff ECM compared to a soft ECM. This is associated with activation of the transcriptional co-factor, YAP. We demonstrate that this stiffness induced activation of YAP enhances the transcriptional activity of both TEAD and RUNX2 transcription factors. Inhibition of either TEAD or RUNX2, using gene silencing, expression of dominant-negative mutants or pharmacological inhibition, reduces cardiac fibroblast proliferation. Using mutants of YAP, defective in TEAD or RUNX2 activation ability, we demonstrate a dual role of YAP-mediated activation of TEAD and RUNX2 for substrate stiffness induced cardiac fibroblast proliferation. Our data highlights a previously unrecognised role of YAP mediated RUNX2 activation for cardiac fibroblast proliferation in response to increased ECM stiffness.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Subunidade alfa 1 de Fator de Ligação ao Core , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fibroblastos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
2.
Cells ; 11(9)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563720

RESUMO

The second messenger, cAMP has potent immunosuppressive and anti-inflammatory actions. These have been attributed, in part, to the ability of cAMP-induced signals to interfere with the function of the proinflammatory transcription factor Nuclear Factor-kappa B (NF-κB). However, the mechanisms underlying the modulation of NF-κB activity by cAMP remain unclear. Here we demonstrate an important role for cAMP-mediated increase in nuclear actin monomer levels in inhibiting NF-κB activity. Elevated cAMP or forced expression of a nuclear localised polymerisation defective actin mutant (NLS-ActinR62D) inhibited basal and TNFα induced mRNA levels of NF-κB-dependent genes and NF-κB-dependent reporter gene activity. Elevated cAMP or NLS-ActinR62D did not affect NF-κB nuclear translocation but did reduce total cellular and nuclear RelA/p65 levels. Preventing the cAMP-induced increase in nuclear actin monomer, either by expressing a nuclear localised active mutant of the actin polymerising protein mDIA, silencing components of the nuclear actin import complex IPO9 and CFL1 or overexpressing the nuclear export complex XPO6, rescued RelA/p65 levels and NF-κB reporter gene activity in forskolin-stimulated cells. Elevated cAMP or NLS-ActinR62D reduced the half-life of RelA/p65, which was reversed by the proteasome inhibitor MG132. Accordingly, forskolin stimulated association of RelA/p65 with ubiquitin affinity beads, indicating increased ubiquitination of RelA/p65 or associated proteins. Taken together, our data demonstrate a novel mechanism underlying the anti-inflammatory effects of cAMP and highlight the important role played by nuclear actin in the regulation of inflammation.


Assuntos
Actinas , NF-kappa B , Actinas/metabolismo , Monofosfato de Adenosina , Anti-Inflamatórios , Colforsina/farmacologia , AMP Cíclico , NF-kappa B/metabolismo
3.
Circ Res ; 130(3): 384-400, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35012325

RESUMO

BACKGROUND: DNA hypomethylation at the F2RL3 (F2R like thrombin or trypsin receptor 3) locus has been associated with both smoking and atherosclerotic cardiovascular disease; whether these smoking-related associations form a pathway to disease is unknown. F2RL3 encodes protease-activated receptor 4, a potent thrombin receptor expressed on platelets. Given the role of thrombin in platelet activation and the role of thrombus formation in myocardial infarction, alterations to this biological pathway could be important for ischemic cardiovascular disease. METHODS: We conducted multiple independent experiments to assess whether DNA hypomethylation at F2RL3 in response to smoking is associated with risk of myocardial infarction via changes to platelet reactivity. Using cohort data (N=3205), we explored the relationship between smoking, DNA hypomethylation at F2RL3, and myocardial infarction. We compared platelet reactivity in individuals with low versus high DNA methylation at F2RL3 (N=41). We used an in vitro model to explore the biological response of F2RL3 to cigarette smoke extract. Finally, a series of reporter constructs were used to investigate how differential methylation could impact F2RL3 gene expression. RESULTS: Observationally, DNA methylation at F2RL3 mediated an estimated 34% of the smoking effect on increased risk of myocardial infarction. An association between methylation group (low/high) and platelet reactivity was observed in response to PAR4 (protease-activated receptor 4) stimulation. In cells, cigarette smoke extract exposure was associated with a 4.9% to 9.3% reduction in DNA methylation at F2RL3 and a corresponding 1.7-(95% CI, 1.2-2.4, P=0.04) fold increase in F2RL3 mRNA. Results from reporter assays suggest the exon 2 region of F2RL3 may help control gene expression. CONCLUSIONS: Smoking-induced epigenetic DNA hypomethylation at F2RL3 appears to increase PAR4 expression with potential downstream consequences for platelet reactivity. Combined evidence here not only identifies F2RL3 DNA methylation as a possible contributory pathway from smoking to cardiovascular disease risk but from any feature potentially influencing F2RL3 regulation in a similar manner.


Assuntos
Plaquetas/metabolismo , Epigênese Genética , Infarto do Miocárdio/genética , Receptores de Trombina/genética , Idoso , Metilação de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/epidemiologia , Receptores de Trombina/metabolismo , Fumar/epidemiologia
4.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118691, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32119877

RESUMO

Actin dynamics regulate cell behaviour in response to physiological signals. Here we demonstrate a novel role for nuclear actin in inhibiting cell proliferation and migration. We demonstrate that physiological signals that elevate cAMP, which is anti-mitogenic in vascular smooth muscle cells, increases nuclear actin monomer levels. Expression of a nuclear-targeted polymerisation-defective actin mutant (NLS-ActinR62D) inhibited proliferation and migration. Preventing nuclear actin monomer accumulation by enhancing its nuclear export or polymerisation reversed the anti-mitogenic and anti-migratory effects of cAMP. Transcriptomic analysis identified repression of proliferation and migration associated genes regulated by serum response factor (SRF) and TEA Domain (TEAD) transcription factors. Accordingly, NLS-ActinR62D inhibited SRF and TEAD activity and target gene expression, and these effects were reversed by constitutively-active mutants of the TEAD and SRF co-factors YAP, TAZ and MKL1. In summary, intranuclear actin inhibits proliferation and migration by inhibiting YAP-TEAD and MKL-SRF activity. This mechanism explains the anti-mitogenic and anti-migratory properties of physiological signals that elevate cAMP. SUMMARY: McNeill et al show that increased levels of intranuclear actin monomer inhibit cell proliferation and migration by inhibiting MKL1-SRF and YAP/TAZ-TEAD-dependent gene expression. This mechanism mediates the anti-mitogenic and anti-migratory effects of physiological signals that elevate cyclic-AMP.


Assuntos
Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Fator de Resposta Sérica/genética , Fatores de Transcrição/genética , Movimento Celular/genética , Núcleo Celular/genética , Proliferação de Células/genética , AMP Cíclico/genética , Regulação da Expressão Gênica/genética , Humanos , Fatores de Transcrição de Domínio TEA , Proteínas de Sinalização YAP
5.
Cells ; 8(11)2019 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744111

RESUMO

Increased vascular smooth muscle cell (VSMC) proliferation contributes towards restenosis after angioplasty, vein graft intimal thickening and atherogenesis. The second messenger 3' 5' cyclic adenosine monophosphate (cAMP) plays an important role in maintaining VSMC quiescence in healthy vessels and repressing VSMC proliferation during resolution of vascular injury. Although the anti-mitogenic properties of cAMP in VSMC have been recognised for many years, it is only recently that we gained a detailed understanding of the underlying signalling mechanisms. Stimuli that elevate cAMP in VSMC inhibit G1-S phase cell cycle progression by inhibiting expression of cyclins and preventing S-Phase Kinase Associated Protein-2 (Skp2-mediated degradation of cyclin-dependent kinase inhibitors. Early studies implicated inhibition of MAPK signalling, although this does not fully explain the anti-mitogenic effects of cAMP. The cAMP effectors, Protein Kinase A (PKA) and Exchange Protein Activated by cAMP (EPAC) act together to inhibit VSMC proliferation by inducing Cyclic-AMP Response Element Binding protein (CREB) activity and inhibiting members of the RhoGTPases, which results in remodelling of the actin cytoskeleton. Cyclic-AMP induced actin remodelling controls proliferation by modulating the activity of Serum Response Factor (SRF) and TEA Domain Transcription Factors (TEAD), which regulate expression of genes required for proliferation. Here we review recent research characterising these mechanisms, highlighting novel drug targets that may allow the anti-mitogenic properties of cAMP to be harnessed therapeutically to limit restenosis.


Assuntos
AMP Cíclico/metabolismo , Oclusão de Enxerto Vascular/metabolismo , Músculo Liso Vascular/citologia , Animais , Proliferação de Células , Humanos , Músculo Liso Vascular/metabolismo , Transdução de Sinais
6.
Biochim Biophys Acta Mol Cell Res ; 1866(10): 1634-1649, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31255721

RESUMO

Ligand-induced activation of Exchange Protein Activated by cAMP-1 (EPAC1) is implicated in numerous physiological and pathological processes, including cardiac fibrosis where changes in EPAC1 expression have been detected. However, little is known about how EPAC1 expression is regulated. Therefore, we investigated regulation of EPAC1 expression by cAMP in cardiac fibroblasts. Elevation of cAMP using forskolin, cAMP-analogues or adenosine A2B-receptor activation significantly reduced EPAC1 mRNA and protein levels and inhibited formation of F-actin stress fibres. Inhibition of actin polymerisation with cytochalasin-D, latrunculin-B or the ROCK inhibitor, Y-27632, mimicked effects of cAMP on EPAC1 mRNA and protein levels. Elevated cAMP also inhibited activity of an EPAC1 promoter-reporter gene, which contained a consensus binding element for TEAD, which is a target for inhibition by cAMP. Inhibition of TEAD activity using siRNA-silencing of its co-factors YAP and TAZ, expression of dominant-negative TEAD or treatment with YAP-TEAD inhibitors, significantly inhibited EPAC1 expression. However, whereas expression of constitutively-active YAP completely reversed forskolin inhibition of EPAC1-promoter activity it did not rescue EPAC1 mRNA levels. Chromatin-immunoprecipitation detected a significant reduction in histone3-lysine27-acetylation at the EPAC1 proximal promoter in response to forskolin stimulation. HDAC1/3 inhibition partially reversed forskolin inhibition of EPAC1 expression, which was completely rescued by simultaneously expressing constitutively active YAP. Taken together, these data demonstrate that cAMP downregulates EPAC1 gene expression via disrupting the actin cytoskeleton, which inhibits YAP/TAZ-TEAD activity in concert with HDAC-mediated histone deacetylation at the EPAC1 proximal promoter. This represents a novel negative feedback mechanism controlling EPAC1 levels in response to cAMP elevation.


Assuntos
AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Processamento de Proteína Pós-Traducional , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Amidas , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Citocalasina D/metabolismo , Fibroblastos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Histonas/metabolismo , Humanos , Masculino , Piridinas , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Tiazolidinas/metabolismo
7.
J Med Chem ; 62(3): 1291-1305, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30640473

RESUMO

The Hippo pathway is an important regulator of cell growth, proliferation, and migration. TEAD transcription factors, which lie at the core of the Hippo pathway, are essential for regulation of organ growth and wound repair. Dysregulation of TEAD and its regulatory cofactor Yes-associated protein (YAP) have been implicated in numerous human cancers and hyperproliferative pathological processes. Hence, the YAP-TEAD complex is a promising therapeutic target. Here, we use in silico molecular docking using Bristol University Docking Engine to screen a library of more than 8 million druglike molecules for novel disrupters of the YAP-TEAD interaction. We report the identification of a novel compound (CPD3.1) with the ability to disrupt YAP-TEAD protein-protein interaction and inhibit TEAD activity, cell proliferation, and cell migration. The YAP-TEAD complex is a viable drug target, and CPD3.1 is a lead compound for the development of more potent TEAD inhibitors for treating cancer and other hyperproliferative pathologies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Simulação de Acoplamento Molecular , Fatores de Transcrição/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Simulação por Computador , Expressão Gênica/efeitos dos fármacos , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
8.
EMBO Mol Med ; 10(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30143543

RESUMO

Hypoxia is a hallmark of solid tumours and a key physiological feature distinguishing cancer from normal tissue. However, a major challenge remains in identifying tractable molecular targets that hypoxic cancer cells depend on for survival. Here, we used SILAC-based proteomics to identify the orphan G protein-coupled receptor GPRC5A as a novel hypoxia-induced protein that functions to protect cancer cells from apoptosis during oxygen deprivation. Using genetic approaches in vitro and in vivo, we reveal HIFs as direct activators of GPRC5A transcription. Furthermore, we find that GPRC5A is upregulated in the colonic epithelium of patients with mesenteric ischaemia, and in colorectal cancers high GPRC5A correlates with hypoxia gene signatures and poor clinical outcomes. Mechanistically, we show that GPRC5A enables hypoxic cell survival by activating the Hippo pathway effector YAP and its anti-apoptotic target gene BCL2L1 Importantly, we show that the apoptosis induced by GPRC5A depletion in hypoxia can be rescued by constitutively active YAP. Our study identifies a novel HIF-GPRC5A-YAP axis as a critical mediator of the hypoxia-induced adaptive response and a potential target for cancer therapy.


Assuntos
Adaptação Fisiológica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/patologia , Fosfoproteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Adaptação Fisiológica/efeitos dos fármacos , Animais , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição , Transcrição Gênica/efeitos dos fármacos , Proteínas de Sinalização YAP , Peixe-Zebra
9.
Sci Rep ; 8(1): 4904, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29559698

RESUMO

Vascular smooth muscle cell (VSMC) proliferation has been implicated in the development of restenosis after angioplasty, vein graft intimal thickening and atherogenesis. We investigated the mechanisms underlying positive and negative regulation of VSMC proliferation by the transcription factor cyclic AMP response element binding protein (CREB). Incubation with the cAMP elevating stimuli, adenosine, prostacyclin mimetics or low levels of forksolin activated CREB without changing CREB phosphorylation on serine-133 but induced nuclear translocation of the CREB co-factors CRTC-2 and CRTC-3. Overexpression of CRTC-2 or -3 significantly increased CREB activity and inhibited VSMC proliferation, whereas CRTC-2/3 silencing inhibited CREB activity and reversed the anti-mitogenic effects of adenosine A2B receptor agonists. By contrast, stimulation with serum or PDGFBB significantly increased CREB activity, dependent on increased CREB phosphorylation at serine-133 but not on CRTC-2/3 activation. CREB silencing significantly inhibited basal and PDGF induced proliferation. These data demonstrate that cAMP activation of CREB, which is CRTC2/3 dependent and serine-133 independent, is anti-mitogenic. Growth factor activation of CREB, which is serine-133-dependent and CRTC2/3 independent, is pro-mitogenic. Hence, CREB plays a dual role in the regulation of VSMC proliferation with the mode of activation determining its pro- or anti-mitogenic function.


Assuntos
Aterosclerose/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Músculo Liso Vascular/metabolismo , Animais , Aterosclerose/genética , Proliferação de Células , Células Cultivadas , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Humanos , Masculino , Músculo Liso Vascular/citologia , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transgenes/genética
10.
Sci Rep ; 7(1): 3681, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623279

RESUMO

Proliferation and migration of vascular smooth muscle cells (VSMCs) or endothelial cell (ECs) promote or inhibit, respectively, restenosis after angioplasty, vein graft intimal thickening and atherogenesis. Here we investigated the effects of cAMP-induced cytoskeletal remodelling on the serum response factor (SRF) co-factors Megakaryoblastic Leukemia-1 and -2 (MKL1 and MKL2) and their role in controlling VSMC and EC proliferation and migration. Elevation of cAMP using forskolin, dibutyryl-cAMP (db-cAMP), BAY60-6583 or Cicaprost induced rapid cytoskeleton remodelling and inhibited proliferation and migration in VSMCs but not EC. Furthermore, elevated cAMP inhibited mitogen-induced nuclear-translocation of MKL1 and MKL2 in VSMCs but not ECs. Forskolin also significantly inhibited serum response factor (SRF)-dependent reporter gene (SRE-LUC) activity and mRNA expression of pro-proliferative and pro-migratory MKL1/2 target genes in VSMCs but not in ECs. In ECs, MKL1 was constitutively nuclear and MKL2 cytoplasmic, irrespective of mitogens or cAMP. Pharmacological or siRNA inhibition of MKL1 significantly inhibited the proliferation and migration of VSMC and EC. Our new data identifies and important contribution of MKL1/2 to explaining the strikingly different response of VSMCs and ECs to cAMP elevation. Elucidation of these pathways promises to identify targets for specific inhibition of VSMC migration and proliferation.


Assuntos
Actinas/metabolismo , AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Miócitos de Músculo Liso/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Movimento Celular , Proliferação de Células , Regulação da Expressão Gênica , Masculino , Transporte Proteico , Ratos , Transdução de Sinais , Transativadores/genética , Fatores de Transcrição/genética
11.
Front Immunol ; 8: 92, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28228757

RESUMO

BACKGROUND: Interferon-γ (IFN-γ) or interleukin-4 (IL-4) drives widely different transcriptional programs in macrophages. However, how IFN-γ and IL-4 alter expression of histone-modifying enzymes involved in epigenetic regulation and how this affects the resulting phenotypic polarization is incompletely understood. METHODS AND RESULTS: We investigated steady-state messenger RNA levels of 84 histone-modifying enzymes and related regulators in colony-stimulating factor-1 differentiated primary human macrophages using quantitative polymerase chain reaction. IFN-γ or IL-4 treatment for 6-48 h changed 11 mRNAs significantly. IFN-γ increased CIITA, KDM6B, and NCOA1, and IL-4 also increased KDM6B by 6 h. However, either cytokine decreased AURKB, ESCO2, SETD6, SUV39H1, and WHSC1, whereas IFN-γ alone decreased KAT2A, PRMT7, and SMYD3 mRNAs only after 18 h, which coincided with decreased cell proliferation. Rendering macrophages quiescent by growth factor starvation or adenovirus-mediated overexpression of p27kip1 inhibited expression of AURKB, ESCO2, SUV39H1, and WHSC1, and mRNA levels were restored by overexpressing the S-phase transcription factor E2F1, implying their expression, at least partly, depended on proliferation. However, CIITA, KDM6B, NCOA1, KAT2A, PRMT7, SETD6, and SMYD3 were regulated independently of effects on proliferation. Silencing KDM6B, the only transcriptional activator upregulated by both IFN-γ and IL-4, pharmacologically or with short hairpin RNA, blunted a subset of responses to each cytokine. CONCLUSION: These findings demonstrate that IFN-γ or IL-4 can regulate the expression of histone acetyl transferases and histone methyl transferases independently of effects on proliferation and that upregulation of the histone demethylase, KDM6B, assists phenotypic polarization by both cytokines.

12.
Br J Pharmacol ; 174(6): 438-453, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28071786

RESUMO

BACKGROUND AND PURPOSE: Myocardial cAMP elevation confers cardioprotection against ischaemia/reperfusion (I/R) injury. cAMP activates two independent signalling pathways, PKA and Epac. This study investigated the cardiac effects of activating PKA and/or Epac and their involvement in cardioprotection against I/R. EXPERIMENTAL APPROACH: Hearts from male rats were used either for determination of PKA and PKC activation or perfused in the Langendorff mode for either cardiomyocyte isolation or used to monitor functional activity at basal levels and after 30 min global ischaemia and 2 h reperfusion. Functional recovery and myocardial injury during reperfusion (LDH release and infarct size) were evaluated. Activation of PKA and/or Epac in perfused hearts was induced using cell permeable cAMP analogues in the presence or absence of inhibitors of PKA, Epac and PKC. H9C2 cells and cardiomyocytes were used to assess activation of Epac and effect on Ca2+ transients. KEY RESULTS: Selective activation of either PKA or Epac was found to trigger a positive inotropic effect, which was considerably enhanced when both pathways were simultaneously activated. Only combined activation of PKA and Epac induced marked cardioprotection against I/R injury. This was accompanied by PKCε activation and repressed by inhibitors of PKA, Epac or PKC. CONCLUSION AND IMPLICATIONS: Simultaneous activation of both PKA and Epac induces an additive inotropic effect and confers optimal and marked cardioprotection against I/R injury. The latter effect is mediated by PKCε activation. This work has introduced a new therapeutic approach and targets to protect the heart against cardiac insults.


Assuntos
Cardiotônicos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/agonistas , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Coração/efeitos dos fármacos , Hidrazonas/farmacologia , Isoquinolinas/farmacologia , Isoxazóis/farmacologia , Masculino , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Sulfonamidas/farmacologia
13.
Sci Rep ; 7: 39945, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059114

RESUMO

Endothelial dysfunction caused by the combined action of disturbed flow, inflammatory mediators and oxidants derived from cigarette smoke is known to promote coronary atherosclerosis and increase the likelihood of myocardial infarctions and strokes. Conversely, laminar flow protects against endothelial dysfunction, at least in the initial phases of atherogenesis. We studied the effects of TNFα and cigarette smoke extract on human coronary artery endothelial cells under oscillatory, normal laminar and elevated laminar shear stress for a period of 72 hours. We found, firstly, that laminar flow fails to overcome the inflammatory effects of TNFα under these conditions but that cigarette smoke induces an anti-oxidant response that appears to reduce endothelial inflammation. Elevated laminar flow, TNFα and cigarette smoke extract synergise to induce expression of the transcriptional regulator activating transcription factor 3 (ATF3), which we show by adenovirus driven overexpression, decreases inflammatory gene expression independently of activation of nuclear factor-κB. Our results illustrate the importance of studying endothelial dysfunction in vitro over prolonged periods. They also identify ATF3 as an important protective factor against endothelial dysfunction. Modulation of ATF3 expression may represent a novel approach to modulate proinflammatory gene expression and open new therapeutic avenues to treat proinflammatory diseases.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Vasos Coronários/imunologia , Citocinas/genética , Fumaça/efeitos adversos , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima , Fator 3 Ativador da Transcrição/genética , Antioxidantes , Células Cultivadas , Vasos Coronários/citologia , Vasos Coronários/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , Resistência ao Cisalhamento , Estresse Mecânico , Nicotiana
14.
J Mol Cell Cardiol ; 90: 1-10, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26625714

RESUMO

AIMS: Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. METHODS AND RESULTS: Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. CONCLUSION: Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , AMP Cíclico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miócitos de Músculo Liso/metabolismo , Amidas/farmacologia , Animais , Proteínas Reguladoras de Apoptose/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Bucladesina/metabolismo , Bucladesina/farmacologia , Proliferação de Células/efeitos dos fármacos , Colforsina/farmacologia , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Tiazolidinas/farmacologia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Proteínas de Sinalização YAP , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
15.
J Mol Cell Cardiol ; 79: 157-68, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25446180

RESUMO

Elevation of intracellular cAMP concentration has numerous vascular protective effects that are in part mediated via actin cytoskeleton-remodelling and subsequent regulation of gene expression. However, the mechanisms are incompletely understood. Here we investigated whether cAMP-induced actin-cytoskeleton remodelling modulates VSMC behaviour by inhibiting expression of CCN1. In cultured rat VSMC, CCN1-silencing significantly inhibited BrdU incorporation and migration in a wound healing assay. Recombinant CCN1 enhanced chemotaxis in a Boyden chamber. Adding db-cAMP, or elevating cAMP using forskolin, significantly inhibited CCN1 mRNA and protein expression in vitro; transcriptional regulation was demonstrated by measuring pre-spliced CCN1 mRNA and CCN1-promoter activity. Forskolin also inhibited CCN1 expression in balloon injured rat carotid arteries in vivo. Inhibiting RhoA activity, which regulates actin-polymerisation, by cAMP-elevation or pharmacologically with C3-transferase, or inhibiting its downstream kinase, ROCK, with Y27632, significantly inhibited CCN1 expression. Conversely, expression of constitutively active RhoA reversed the inhibitory effects of forskolin on CCN1 mRNA. Furthermore, CCN1 mRNA levels were significantly decreased by inhibiting actin-polymerisation with latrunculin B or increased by stimulating actin-polymerisation with Jasplakinolide. We next tested the role of the actin-dependent SRF co-factor, MKL1, in CCN1 expression. Forskolin inhibited nuclear translocation of MKL1 and binding of MKL1 to the CCN1 promoter. Constitutively-active MKL1 enhanced basal promoter activity of wild-type but not SRE-mutated CCN1; and prevented forskolin inhibition. Furthermore, pharmacological MKL-inhibition with CCG-1423 significantly inhibited CCN1 promoter activity as well as mRNA and protein expression. Our data demonstrates that cAMP-induced actin-cytoskeleton remodelling regulates expression of CCN1 through MKL1: it highlights a novel cAMP-dependent mechanism controlling VSMC behaviour.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , AMP Cíclico/farmacologia , Proteína Rica em Cisteína 61/genética , Transativadores/metabolismo , Adenosina/farmacologia , Aminopiridinas/farmacologia , Animais , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Proliferação de Células/efeitos dos fármacos , Colforsina/farmacologia , Proteína Rica em Cisteína 61/metabolismo , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Humanos , Masculino , Mitógenos/farmacologia , Modelos Biológicos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos Sprague-Dawley , Fator de Resposta Sérica/metabolismo , Fatores de Transcrição , Transcrição Gênica/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
16.
J Mol Cell Cardiol ; 72: 9-19, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24534707

RESUMO

AIMS: Cyclic AMP inhibits vascular smooth muscle cell (VSMC) proliferation which is important in the aetiology of numerous vascular diseases. The anti-mitogenic properties of cAMP in VSMC are dependent on activation of protein kinase A (PKA) and exchange protein activated by cAMP (EPAC), but the mechanisms are unclear. METHODS AND RESULTS: Selective agonists of PKA and EPAC synergistically inhibited Egr1 expression, which was essential for VSMC proliferation. Forskolin, adenosine, A2B receptor agonist BAY60-6583 and Cicaprost also inhibited Egr1 expression in VSMC but not in endothelial cells. Inhibition of Egr1 by cAMP was independent of cAMP response element binding protein (CREB) activity but dependent on inhibition of serum response element (SRE) activity. SRF binding to the Egr1 promoter was not modulated by cAMP stimulation. However, Egr1 expression was dependent on the SRF co-factors Elk1 and 4 but independent of MAL. Inhibition of SRE-dependent Egr1 expression was due to synergistic inhibition of Rac1 activity by PKA and EPAC, resulting in rapid cytoskeleton remodelling and nuclear export of ERK1/2. This was associated with de-phosphorylation of the SRF co-factor Elk1. CONCLUSION: cAMP inhibits VSMC proliferation by rapidly inhibiting Egr1 expression. This occurs, at least in part, via inhibition of Rac1 activity leading to rapid actin-cytoskeleton remodelling, nuclear export of ERK1/2, impaired Elk1-phosphorylation and inhibition of SRE activity. This identifies one of the earliest mechanisms underlying the anti-mitogenic effects of cAMP in VSMC but not in endothelial cells, making it an attractive target for selective inhibition of VSMC proliferation.


Assuntos
AMP Cíclico/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Miócitos de Músculo Liso/metabolismo , Adenosina/farmacologia , Aminopiridinas/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Colforsina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/antagonistas & inibidores , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Especificidade de Órgãos , Cultura Primária de Células , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
17.
Front Biosci (Landmark Ed) ; 16(4): 1517-35, 2011 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-21196245

RESUMO

Vascular smooth muscle cell proliferation plays a major role in the development of numerous vascular pathologies. Understanding the molecular mechanisms that regulate smooth muscle cell proliferation is therefore essential for the development of new therapies for the treatment of these pathologies. Skp2 is an F-box protein component of the SCFSkp2 ubiquitin-ligase that controls cellular proliferation by regulating the ubiquitination and degradation of several cell-cycle regulatory proteins, including the cyclin-dependent kinase inhibitor, p27Kip1. This review discusses the recent literature on the function and regulation of Skp2 in smooth muscle cells, which is emerging as a key player in the control of smooth muscle cell proliferation during vascular disease.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Músculo Liso Vascular/patologia , Proteínas Quinases Associadas a Fase S/fisiologia , Doenças Cardiovasculares/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/fisiologia , Matriz Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proteínas Quinases Associadas a Fase S/biossíntese , Proteínas Quinases Associadas a Fase S/efeitos dos fármacos , Túnica Íntima/patologia , Ubiquitinação
18.
J Mol Cell Cardiol ; 50(1): 87-98, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20971121

RESUMO

Cyclic AMP signalling promotes VSMC quiescence in healthy vessels and during vascular healing following injury. Cyclic AMP inhibits VSMC proliferation via mechanisms that are not fully understood. We investigated the role of PKA and Epac signalling on cAMP-induced inhibition of VSMC proliferation. cAMP-mediated growth arrest was PKA-dependent. However, selective PKA activation with 6-Benzoyl-cAMP did not inhibit VSMC proliferation, indicating a requirement for additional pathways. Epac activation using the selective cAMP analogue 8-CPT-2'-O-Me-cAMP, did not affect levels of hyperphosphorylated Retinoblastoma (Rb) protein, a marker of G1-S phase transition, or BrdU incorporation, despite activation of the Epac-effector Rap1. However, 6-Benzoyl-cAMP and 8-CPT-2'-O-Me-cAMP acted synergistically to inhibit Rb-hyperphosphorylation and BrdU incorporation, indicating that both pathways are required for growth inhibition. Consistent with this, constitutively active Epac increased Rap1 activity and synergised with 6-Benzoyl-cAMP to inhibit VSMC proliferation. PKA and Epac synergised to inhibit phosphorylation of ERK and JNK. Induction of stellate morphology, previously associated with cAMP-mediated growth arrest, was also dependent on activation of both PKA and Epac. Rap1 inhibition with Rap1GAP or siRNA silencing did not negate forskolin-induced inhibition of Rb-hyperphosphorylation, BrdU incorporation or stellate morphology. This data demonstrates for the first time that Epac synergises with PKA via a Rap1-independent mechanism to mediate cAMP-induced growth arrest in VSMC. This work highlights the role of Epac as a major player in cAMP-dependent growth arrest in VSMC.


Assuntos
Acetilcisteína/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eritromicina/análogos & derivados , Miócitos de Músculo Liso/efeitos dos fármacos , Acetilcisteína/metabolismo , Animais , Western Blotting , Células Cultivadas , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Eritromicina/metabolismo , Masculino , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Paxilina/metabolismo , Faloidina/metabolismo , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
19.
J Vasc Surg ; 50(5): 1135-42, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19878790

RESUMO

OBJECTIVE: Vascular smooth muscle cell (VSMC) proliferation plays an important role in the development of postangioplasty or in-stent restenosis, venous graft failure, and atherosclerosis. Our previous work has demonstrated S-phase kinase-associated protein-2 (Skp2), an F-box subunit of SCF(Skp2) ubiquitin ligase, as an important mediator and common final pathway for growth factors, extracellular matrices, and cyclic-nucleotides to regulate VSMC proliferation in vitro. However, whether alteration of Skp2 function also regulates VSMC proliferation in vivo and neointimal thickening postvascular injury remains unclear. We investigated the effect of Skp2 on VSMC proliferation and neointimal formation in vivo. METHODS AND RESULTS: Firstly, we demonstrated that Skp2-null mice developed significantly smaller neointimal areas than wild-type mice after carotid ligation. Secondly, to further identify a local rather than a systemic effect of Skp2 alteration, we demonstrated that adenovirus-mediated expression of dominant-negative Skp2 in the balloon-injured rat carotid artery significantly increased medial p27(Kip1) levels, inhibited VSMC proliferation, and the subsequent neointimal thickening. Lastly, to determine if Skp2 alone is sufficient to drive VSMC proliferation and lesion development in vivo, we demonstrated that adenovirus-delivery of wild-type Skp2 to the minimally-injured rat carotids is sufficient to downregulate p27(Kip1) protein levels, enhanced medial VSMC proliferation, and the neointimal thickening. CONCLUSION: This data provides, we believe for the first time, a more comprehensive understanding of Skp2 in the regulation of VSMC proliferation and neointimal formation and suggests that Skp2 is a promising target in the treatment of vasculoproliferative diseases.


Assuntos
Lesões das Artérias Carótidas/metabolismo , Proliferação de Células , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Túnica Íntima/metabolismo , Adenoviridae/genética , Animais , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/patologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Modelos Animais de Doenças , Vetores Genéticos , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Ratos , Ratos Sprague-Dawley , Proteínas Quinases Associadas a Fase S/genética , Transdução Genética , Túnica Íntima/patologia
20.
Cardiovasc Res ; 80(2): 290-8, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18599477

RESUMO

AIMS: Vascular smooth muscle cell (VSMC) proliferation contributes to intima formation after angioplasty or venous by-pass grafting, and during atherosclerosis. VSMC proliferation requires degradation of p27(Kip1) promoted by S-phase kinase-associated protein-2 (Skp2), an F-box protein component of the Skp-Cullin-F-box(Skp2) ubiquitin-ligase. We investigated the role of Rac(1) in the regulation of Skp2 in rat VSMC. METHODS AND RESULTS: Rat carotid balloon injury increased Rac(1) activity. Rho GTPase inhibition with Clostridium difficile Toxin B or specific Rac(1) inhibition with adenovirus-mediated expression of dominant-negative Rac(1) reduced Skp2 levels, and VSMC proliferation in vitro and intima formation in vivo following carotid balloon injury. Inhibition of Skp2 expression and proliferation by dominant-negative Rac(1) was reversed by exogenous Skp2. Elevation of endogenous adenosine 3',5'-cyclic monophosphate (cAMP) with forskolin-inhibited Rac(1) activity, reduced Skp2, increased p27(Kip1) and inhibited VSMC proliferation, effects that were reversed by constitutively active Rac(1). These effects were independent of Rac(1) Cdc42/Rac interactive binding (CRIB)-domain effector proteins but associated with Rac(1)-dependent actin polymerization. CONCLUSION: Rac(1) activity regulates VSMC proliferation by controlling Skp2 levels. Activation of Rac(1) induced by balloon injury in vivo increases Skp2 levels, which promotes VSMC proliferation and intima formation. Inhibition of this novel pathway underlies the negative effects of cAMP on VSMC proliferation.


Assuntos
Lesões das Artérias Carótidas/enzimologia , Artéria Carótida Primitiva/enzimologia , Proliferação de Células , Músculo Liso Vascular/enzimologia , Proteínas Quinases Associadas a Fase S/metabolismo , Túnica Íntima/enzimologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Lesões das Artérias Carótidas/etiologia , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/efeitos dos fármacos , Artéria Carótida Primitiva/patologia , Cateterismo/efeitos adversos , Células Cultivadas , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Mutação , Ratos , Ratos Sprague-Dawley , Proteínas Quinases Associadas a Fase S/genética , Transdução de Sinais , Fatores de Tempo , Túnica Íntima/efeitos dos fármacos , Túnica Íntima/patologia , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA