Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Vascular ; : 17085381231174726, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249070

RESUMO

OBJECTIVES: To demonstrate the ease with which steerable sheaths, designed for cardiac electrophysiological applications, can be used to aid endovascular treatment of a wide range of non-cardiac vascular disease and to assist with target vessel cannulation in branched and fenestrated aortic grafts. METHODS: A retrospective medical chart review was carried out to identify cases from a single vascular surgery unit (2019-2022) where the HeartSpan Steerable Sheath (HSS) (Merit Medical, South Jordan, UT, USA) was utilised to enable endovascular management of complex vascular pathology. A case presentation of branch graft insertion performed entirely via distal access is described and used to help identify pertinent sheath characteristics and technical considerations, and to illustrate the advantages and disadvantages of the design for modified use in target vessel cannulation. RESULTS: The HSS was used in the endovascular treatment of different vascular pathologies in 15 patients (23 target vessels) where access to the vessels using standard catheters and approaches was not possible. Cannulation and subsequent stenting were successful for 21 of the 23 target vessels in total. Of these cases, the HSS was used as an adjunct for deployment of fenestrated endovascular graft systems when conventional techniques for canulation of target vessels had failed on five occasions. On another four occasions, the HSS enabled full deployment of the entire Zenith® t-Branch™ Thoracoabdominal Endovascular Graft system from an exclusively femoral approach. An additional three cases involved use of the HSS for superior mesenteric artery cannulation in patients with mesenteric ischaemia. The device was also used once in each of the following cases: contralateral common iliac cannulation, cannulation of contralateral internal iliac artery for coil embolisation, and access of a contralateral iliac branched device. There were no stent dislocations and all aortic branches that were patent at the completion of each case remained so 1-year post procedure. CONCLUSION: Steerable sheaths designed for cardiac electrophysical applications, like the HSS Introducer, can be successfully utilised for cannulation of challenging target vessels in a wide range of aortic endovascular procedures. This modified approach may salvage cases that would otherwise be considered inoperable in regions of the world where steerable sheaths designed for aortic use are not readily available.

2.
FASEB Bioadv ; 4(12): 758-774, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36479208

RESUMO

The ß2AR is a prototypical G protein-coupled receptor (GPCR) known to orchestrate different cellular responses by the stimulation of specific signaling pathways. The best-established signaling pathways for the ß2AR are the canonical Gs pathway and the alternative ß arrestin 2 (ßarr2) pathway. Exploring each pathway separately remains a challenging task due to the dynamic nature of the receptor. Here, we fused the ß2AR with its cognate transducers, Gαs and ßarr2, using short linkers as a novel approach for restricting the conformation of the receptor and preferentially activating one of its two signaling pathways. We characterized the behavior of our fusion proteins ß2AR-Gαs and ß2AR-ßarr2 in HEK293 cells by measuring their constitutive activity, transducer recruitment, and pharmacological modulation. Our fusion proteins show (a) steric hindrance from the reciprocal endogenous transducers, (b) constitutive activity of the ß2AR for the signaling pathway activated by the tethered transducer, and (c) pharmacologic modulation by ß2AR ligands. Based on these characteristics, we further explored the possibility of a gain-of-function mechanism in the human lung non-tumorigenic epithelial cell line, BEAS-2B cells. This immortalized human bronchial epithelial cell line has immunomodulatory properties through cytokine release mediated by ß2AR stimulation. Our findings suggest that each signaling pathway of the ß2AR is biased toward either the Th1 or Th2 inflammatory response suggesting a role in regulating the immune phenotype of respiratory diseases. Our data imply that our fusion proteins can be used as tools to isolate the function elicited by a single signaling pathway in physiologically relevant cell types.

3.
Front Pharmacol ; 13: 1049640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561339

RESUMO

Drug repurposing can overcome both substantial costs and the lengthy process of new drug discovery and development in cancer treatment. Some Food and Drug Administration (FDA)-approved drugs have been found to have the potential to be repurposed as anti-cancer drugs. However, the progress is slow due to only a handful of strategies employed to identify drugs with repurposing potential. In this study, we evaluated GPCR-targeting drugs by high throughput screening (HTS) for their repurposing potential in triple-negative breast cancer (TNBC) and drug-resistant human epidermal growth factor receptor-2-positive (HER2+) breast cancer (BC), due to the dire need to discover novel targets and drugs in these subtypes. We assessed the efficacy and potency of drugs/compounds targeting different GPCRs for the growth rate inhibition in the following models: two TNBC cell lines (MDA-MB-231 and MDA-MB-468) and two HER2+ BC cell lines (BT474 and SKBR3), sensitive or resistant to lapatinib + trastuzumab, an effective combination of HER2-targeting therapies. We identified six drugs/compounds as potential hits, of which 4 were FDA-approved drugs. We focused on ß-adrenergic receptor-targeting nebivolol as a candidate, primarily because of the potential role of these receptors in BC and its excellent long-term safety profile. The effects of nebivolol were validated in an independent assay in all the cell line models. The effects of nebivolol were independent of its activation of ß3 receptors and nitric oxide production. Nebivolol reduced invasion and migration potentials which also suggests its inhibitory role in metastasis. Analysis of the Surveillance, Epidemiology and End Results (SEER)-Medicare dataset found numerically but not statistically significant reduced risk of all-cause mortality in the nebivolol group. In-depth future analyses, including detailed in vivo studies and real-world data analysis with more patients, are needed to further investigate the potential of nebivolol as a repurposed therapy for BC.

4.
Commun Biol ; 5(1): 212, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260793

RESUMO

Internalization of membrane proteins plays a key role in many physiological functions; however, highly sensitive and versatile technologies are lacking to study such processes in real-time living systems. Here we describe an assay based on bioluminescence able to quantify membrane receptor trafficking for a wide variety of internalization mechanisms such as GPCR internalization/recycling, antibody-mediated internalization, and SARS-CoV2 viral infection. This study represents an alternative drug discovery tool to accelerate the drug development for a wide range of physiological processes, such as cancer, neurological, cardiopulmonary, metabolic, and infectious diseases including COVID-19.


Assuntos
Descoberta de Drogas/métodos , Proteínas de Membrana , Transporte Proteico/fisiologia , Espectrometria de Fluorescência/métodos , COVID-19 , Desenvolvimento de Medicamentos/métodos , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Nanotecnologia , Receptores Acoplados a Proteínas G , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Internalização do Vírus
5.
Cell Stress Chaperones ; 25(6): 993-1012, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32779001

RESUMO

The adoptive transfer of donor-derived virus-specific T cells (VSTs) is an effective treatment for infections following allogeneic hematopoietic cell transplantation. Acute exercise mobilizes effector lymphocytes and VSTs to the circulation and augments the ex vivo manufacture of VSTs. This study determined if ß2 adrenergic receptor (AR) signaling precipitated the VST response to acute exercise. Healthy participants (n = 12) completed 30 min of steady-state cycling exercise after ingesting a placebo, a ß1 + 2 AR antagonist (nadolol) or a ß1 AR antagonist (bisoprolol). Circulating VSTs to cytomegalovirus (CMV), Epstein-Barr virus (EBV), and adenovirus (AdV) antigens were enumerated before and after exercise, and peripheral blood mononuclear cells were cultured with viral peptides for 8 days to expand multi-VSTs. Compared with placebo, nadolol blunted the exercise-induced mobilization of CMV-VSTs (Δ VSTs/100,000 CD3+ T cells = 93 ± 104 vs. 22 ± 91 for placebo and nadolol, respectively; p = 0.036), while bisoprolol did not, despite both drugs evoking similar reductions in exercising heart rate and blood pressure. Circulating AdV and EBV VSTs (VSTs/mL blood) only increased after exercise with placebo. Although not significant, nadolol partially mitigated exercise-induced increases in multi-VST expansion, particularly in participants that demonstrated an exercise-induced increase in VST expansion. We conclude that exercise-induced enhancements in VST mobilization and expansion are at least partially ß2 AR mediated, thus highlighting a role for the ß2 AR in targeted therapy for the augmentation of VST immune cell therapeutics in the allogeneic adoptive transfer setting. Moreover, long-term regular exercise may provide additional viral protection in the host through frequent ß2 AR-dependent mobilization and redistribution of VSTs cumulated with each bout of exercise.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Antivirais/farmacologia , Terapia Baseada em Transplante de Células e Tecidos , Exercício Físico , Linfócitos T/imunologia , Vírus/imunologia , Adulto , Pressão Sanguínea/efeitos dos fármacos , Catecolaminas/sangue , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hidrocortisona/sangue , Ácido Láctico/sangue , Masculino , Peptídeos/farmacologia , Fenótipo , Receptores Adrenérgicos beta/metabolismo , Especificidade da Espécie , Linfócitos T/efeitos dos fármacos , Adulto Jovem
6.
Front Cardiovasc Med ; 7: 85, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32432127

RESUMO

The COVID-19 pandemic is an unprecedented challenge and will require novel therapeutic strategies. Affected patients are likely to be at risk of arrhythmia due to underlying comorbidities, polypharmacy and the disease process. Importantly, a number of the medications likely to receive significant use can themselves, particularly in combination, be pro-arrhythmic. Drug-induced prolongation of the QT interval is primarily caused by inhibition of the hERG potassium channel either directly and/or by impaired channel trafficking. Concurrent use of multiple hERG-blocking drugs may have a synergistic rather than additive effect which, in addition to any pre-existing polypharmacy, critical illness or electrolyte imbalance, may significantly increase the risk of arrhythmia and Torsades de Pointes. Knowledge of these risks will allow informed decisions regarding appropriate therapeutics and monitoring to keep our patients safe.

7.
J Tissue Eng Regen Med ; 14(2): 306-318, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31821703

RESUMO

Clinical trials using human adipogenic mesenchymal stem cells (hAdMSCs) for the treatment of cardiac diseases have shown improvement in cardiac function and were proven safe. However, hAdMSCs do not convert efficiently into cardiomyocytes (CMs) or vasculature. Thus, reprogramming hAdMSCs into myocyte progenitors may fare better in future investigations. To reprogramme hAdMSCs into electrically conductive cardiac progenitor cells, we pioneered a three-step reprogramming strategy that uses proven MESP1/ETS2 transcription factors, ß-adrenergic and hypoxic signalling induced in three-dimensional (3D) cardiospheres. In Stage 1, ETS2 and MESP1 activated NNKX2.5, TBX5, MEF2C, dHAND, and GATA4 during the conversion of hAdMSCs into cardiac progenitor cells. Next, in Stage 2, ß2AR activation repositioned cardiac progenitors into de novo immature conductive cardiac cells, along with the appearance of RYR2, CAV2.1, CAV3.1, NAV1.5, SERCA2, and CX45 gene transcripts and displayed action potentials. In Stage 3, electrical conduction that was fostered by 3D cardiospheres formed in a Synthecon®, Inc. rotating bioreactor induced the appearance of hypoxic genes: HIF-1α/ß, PCG 1α/ß, and NOS2, which coincided with the robust activation of adult contractile genes including MLC2v, TNNT2, and TNNI3, ion channel genes, and the appearance of hyperpolarization-activated and cyclic nucleotide-gated channels (HCN1-4). Conduction velocities doubled to ~200 mm/s after hypoxia and doubled yet again after dissociation of the 3D cell clusters to ~400 mm/s. By comparison, normal conduction velocities within working ventricular myocytes in the whole heart range from 0.5 to 1 m/s. Epinephrine stimulation of stage 3 cardiac cells in patches resulted in an increase in amplitude of the electrical wave, indicative of conductive cardiac cells. Our efficient protocol that converted hAdMSCs into highly conductive cardiac progenitors demonstrated the potential utilization of stage 3 cells for tissue engineering applications for cardiac repair.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Receptores Adrenérgicos beta/metabolismo , Adipogenia , Adrenérgicos , Reatores Biológicos , Diferenciação Celular/fisiologia , Proliferação de Células , Condutividade Elétrica , Epinefrina/farmacologia , Humanos , Hipóxia , Cinética , Miócitos Cardíacos/citologia , Transdução de Sinais , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais , Fatores de Transcrição/metabolismo
9.
Front Immunol ; 10: 3082, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038628

RESUMO

TCR-gamma delta (γδ) T-cells are considered important players in the graft-vs.-tumor effect following allogeneic hematopoietic cell transplantation (alloHCT) and have emerged as candidates for adoptive transfer immunotherapy in the treatment of both solid and hematological tumors. Systemic ß-adrenergic receptor (ß-AR) activation has been shown to mobilize TCR-γδ T-cells to the blood, potentially serving as an adjuvant for alloHCT and TCR-γδ T-cell therapy. We investigated if systemic ß-AR activation, using acute dynamic exercise as an experimental model, can increase the mobilization, ex vivo expansion, and anti-tumor activity of TCR-γδ T-cells isolated from the blood of healthy humans. We also sought to investigate the ß-AR subtypes involved, by administering a preferential ß1-AR antagonist (bisoprolol) and a non-preferential ß1 + ß2-AR antagonist (nadolol) prior to exercise as part of a randomized placebo controlled cross-over experiment. We found that exercise mobilized TCR-γδ cells to blood and augmented their ex vivo expansion by ~182% compared to resting blood when stimulated with IL-2 and ZOL for 14-days. Exercise also increased the proportion of CD56+, NKG2D+/CD62L-, CD158a/b/e+ and NKG2A- cells among the expanded TCR-γδ cells, and increased their cytotoxic activity against several tumor target cells (K562, U266, 221.AEH) in vitro by 40-60%. Blocking NKG2D on TCR-γδ cells in vitro eliminated the augmented cytotoxic effects of exercise against U266 target cells. Furthermore, administering a ß1 + ß2-AR (nadolol), but not a ß1-AR (bisoprolol) antagonist prior to exercise abrogated the exercise-induced enhancement in TCR-γδ T-cell mobilization and ex vivo expansion. Furthermore, nadolol completely abrogated while bisoprolol partially inhibited the exercise-induced increase in the cytotoxic activity of the expanded TCR-γδ T-cells. We conclude that acute systemic ß-AR activation in healthy donors markedly augments the mobilization, ex vivo expansion, and anti-tumor activity of TCR-γδ T-cells and that some of these effects are due to ß2-AR signaling and phenotypic shifts that promote a dominant activating signal via NKG2D. These findings highlight ß-ARs as potential targets to favorably alter the composition of allogeneic peripheral blood stem cell grafts and improve the potency of TCR-γδ T-cell immune cell therapeutics.


Assuntos
Exercício Físico/fisiologia , Efeito Enxerto vs Tumor/imunologia , Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores Adrenérgicos/metabolismo , Linfócitos T/imunologia , Agonistas Adrenérgicos beta/administração & dosagem , Antagonistas Adrenérgicos beta/administração & dosagem , Adulto , Bisoprolol/administração & dosagem , Linhagem Celular , Proliferação de Células , Citotoxicidade Imunológica , Feminino , Humanos , Ativação Linfocitária , Masculino , Nadolol/administração & dosagem , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Transplante Homólogo , Adulto Jovem
10.
Brain Behav Immun ; 68: 66-75, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29017969

RESUMO

Acute dynamic exercise mobilizes CD34+ hematopoietic stem cells (HSCs) to the bloodstream, potentially serving as an economical adjuvant to boost the collection of HSCs from stem cell transplant donors. The mechanisms responsible for HSC mobilization with exercise are unknown but are likely due to hemodynamic perturbations, endogenous granulocyte-colony stimulating factor (G-CSF), and/or ß2-adrenergic receptor (ß2-AR) signaling. We characterized the temporal response of HSC mobilization and plasma G-CSF following exercise, and determined the impact of in vivo ß-AR blockade on the exercise-induced mobilization of HSCs. Healthy runners (n = 15) completed, in balanced order, two single bouts of steady state treadmill running exercise at moderate (lasting 90-min) or vigorous (lasting 30-min) intensity. A separate cohort of healthy cyclists (n = 12) completed three 30-min cycling ergometer trials at vigorous intensity after ingesting: (i) 10 mg bisoprolol (ß1-AR antagonist); (ii) 80 mg nadolol (ß1 + ß2-AR antagonist); or (iii) placebo, in balanced order with a double-blind design. Blood samples collected before, during (runners only), immediately after, and at several points during exercise recovery were used to determine circulating G-CSF levels (runners only) and enumerate CD34+ HSCs by flow cytometry (runners and cyclists). Steady state vigorous but not moderate intensity exercise mobilized HSCs, increasing the total blood CD34+ count by ∼4.15 ±â€¯1.62 Δcells/µl (+202 ±â€¯92%) compared to resting conditions. Plasma G-CSF increased in response to moderate but not vigorous exercise. Relative to placebo, nadolol and bisoprolol lowered exercising heart rate and blood pressure to comparable levels. The number of CD34+ HSCs increased with exercise after the placebo and bisoprolol trials, but not the nadolol trial, suggesting ß2-AR signaling mediated the mobilization of CD34+ cells [Placebo: 2.10 ±â€¯1.16 (207 ±â€¯69.2%), Bisoprolol 1.66 ±â€¯0.79 (+163 ±â€¯29%), Nadolol: 0.68 ±â€¯0.54 (+143 ±â€¯36%) Δcells/µL]. We conclude that the mobilization of CD34+ HSCs with exercise is not dependent on circulating G-CSF and is likely due to the combined actions of ß2-AR signaling and hemodynamic shear stress.


Assuntos
Exercício Físico/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Receptores Adrenérgicos beta 2/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/metabolismo , Adulto , Antígenos CD34/metabolismo , Bisoprolol , Método Duplo-Cego , Feminino , Fator Estimulador de Colônias de Granulócitos/sangue , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Nadolol , Células-Tronco de Sangue Periférico , Receptores Adrenérgicos beta 2/fisiologia , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 114(43): E9163-E9171, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073113

RESUMO

The mostly widely used bronchodilators in asthma therapy are ß2-adrenoreceptor (ß2AR) agonists, but their chronic use causes paradoxical adverse effects. We have previously determined that ß2AR activation is required for expression of the asthma phenotype in mice, but the cell types involved are unknown. We now demonstrate that ß2AR signaling in the airway epithelium is sufficient to mediate key features of the asthmatic responses to IL-13 in murine models. Our data show that inhibition of ß2AR signaling with an aerosolized antagonist attenuates airway hyperresponsiveness (AHR), eosinophilic inflammation, and mucus-production responses to IL-13, whereas treatment with an aerosolized agonist worsens these phenotypes, suggesting that ß2AR signaling on resident lung cells modulates the asthma phenotype. Labeling with a fluorescent ß2AR ligand shows the receptors are highly expressed in airway epithelium. In ß2AR-/- mice, transgenic expression of ß2ARs only in airway epithelium is sufficient to rescue IL-13-induced AHR, inflammation, and mucus production, and transgenic overexpression in WT mice exacerbates these phenotypes. Knockout of ß-arrestin-2 (ßarr-2-/-) attenuates the asthma phenotype as in ß2AR-/- mice. In contrast to eosinophilic inflammation, neutrophilic inflammation was not promoted by ß2AR signaling. Together, these results suggest ß2ARs on airway epithelial cells promote the asthma phenotype and that the proinflammatory pathway downstream of the ß2AR involves ßarr-2. These results identify ß2AR signaling in the airway epithelium as capable of controlling integrated responses to IL-13 and affecting the function of other cell types such as airway smooth muscle cells.


Assuntos
Asma/etiologia , Eosinófilos/patologia , Células Epiteliais/metabolismo , Pulmão/patologia , Receptores Adrenérgicos beta 2/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Asma/patologia , Brônquios/citologia , Modelos Animais de Doenças , Epinefrina/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-13/toxicidade , Pulmão/citologia , Metaplasia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais
12.
Pulm Pharmacol Ther ; 46: 30-40, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28729042

RESUMO

BACKGROUND: Our previous studies suggested certain ß-adrenoceptor blockers (ß-blockers) attenuate the asthma phenotype in ovalbumin driven murine models of asthma. However, the ovalbumin model has been criticized for lack of clinical relevance. METHODS: We tested the non-selective ß-blockers, carvedilol and nadolol, in house dust mite (HDM) driven murine asthma models where drugs were administered both pre- and post-development of the asthma phenotype. We measured inflammation, mucous metaplasia, and airway hyper-responsiveness (AHR). We also measured the effects of the ß-blockers on extracellular-signal regulated kinase (ERK 1/2) phosphorylation in lung homogenates. RESULTS: We show that nadolol, but not carvedilol, attenuated inflammation and mucous metaplasia, and had a moderate effect attenuating AHR. Following HDM exposure, ERK1/2 phosphorylation was elevated, but the level of phosphorylation was unaffected by ß-blockers, suggesting ERK1/2 phosphorylation becomes dissociated from the asthma phenotype. CONCLUSION: Our findings in HDM models administering drugs both pre- and post-development of the asthma phenotype are consistent with previous results using ovalbumin models and show differential effects for nadolol and carvedilol on the asthma phenotype. Lastly, our data suggest that ERK1/2 phosphorylation may be involved in development of the asthma phenotype, but may have a limited role in maintaining the phenotype.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Asma/tratamento farmacológico , Carbazóis/farmacologia , Nadolol/farmacologia , Propanolaminas/farmacologia , Animais , Asma/imunologia , Asma/patologia , Carvedilol , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ovalbumina/imunologia , Fenótipo , Fosforilação , Pyroglyphidae/imunologia , Hipersensibilidade Respiratória/tratamento farmacológico
13.
Am J Physiol Heart Circ Physiol ; 312(3): H384-H391, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27923791

RESUMO

Constitutive regulation by PKA has recently been shown to contribute to L-type Ca2+ current (ICaL) at the ventricular t-tubule in heart failure. Conversely, reduction in constitutive regulation by PKA has been proposed to underlie the downregulation of atrial ICaL in heart failure. The hypothesis that downregulation of atrial ICaL in heart failure involves reduced channel phosphorylation was examined. Anesthetized adult male Wistar rats underwent surgical coronary artery ligation (CAL, N=10) or equivalent sham-operation (Sham, N=12). Left atrial myocytes were isolated ~18 wk postsurgery and whole cell currents recorded (holding potential=-80 mV). ICaL activated by depolarizing pulses to voltages from -40 to +50 mV were normalized to cell capacitance and current density-voltage relations plotted. CAL cell capacitances were ~1.67-fold greater than Sham (P ≤ 0.0001). Maximal ICaL conductance (Gmax ) was downregulated more than 2-fold in CAL vs. Sham myocytes (P < 0.0001). Norepinephrine (1 µmol/l) increased Gmax >50% more effectively in CAL than in Sham so that differences in ICaL density were abolished. Differences between CAL and Sham Gmax were not abolished by calyculin A (100 nmol/l), suggesting that increased protein dephosphorylation did not account for ICaL downregulation. Treatment with either H-89 (10 µmol/l) or AIP (5 µmol/l) had no effect on basal currents in Sham or CAL myocytes, indicating that, in contrast to ventricular myocytes, neither PKA nor CaMKII regulated basal ICaL Expression of the L-type α1C-subunit, protein phosphatases 1 and 2A, and inhibitor-1 proteins was unchanged. In conclusion, reduction in PKA-dependent regulation did not contribute to downregulation of atrial ICaL in heart failure.NEW & NOTEWORTHY Whole cell recording of L-type Ca2+ currents in atrial myocytes from rat hearts subjected to coronary artery ligation compared with those from sham-operated controls reveals marked reduction in current density in heart failure without change in channel subunit expression and associated with altered phosphorylation independent of protein kinase A.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Átrios do Coração/metabolismo , Insuficiência Cardíaca/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Átrios do Coração/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Isoquinolinas/farmacologia , Masculino , Potenciais da Membrana , Norepinefrina/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Sulfonamidas/farmacologia
14.
PLoS One ; 10(7): e0132559, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161982

RESUMO

Mucus hypersecretion by airway epithelium is a hallmark of inflammation in allergic asthma and results in airway narrowing and obstruction. Others have shown that administration a TH2 cytokine, IL-13 is sufficient to cause mucus hypersecretion in vivo and in vitro. Asthma therapy often utilizes ß2-adrenoceptor (ß2AR) agonists, which are effective acutely as bronchodilators, however chronic use may lead to a worsening of asthma symptoms. In this study, we asked whether ß2AR signaling in normal human airway epithelial (NHBE) cells affected mucin production in response to IL-13. This cytokine markedly increased mucin production, but only in the presence of epinephrine. Mucin production was blocked by ICI-118,551, a preferential ß2AR antagonist, but not by CGP-20712A, a preferential ß1AR antagonist. Constitutive ß2AR activity was not sufficient for IL-13 induced mucin production and ß-agonist-induced signaling is required. A clinically important long-acting ß-agonist, formoterol, was as effective as epinephrine in potentiating IL-13 induced MUC5AC transcription. IL-13 induced mucin production in the presence of epinephrine was significantly reduced by treatment with selective inhibitors of ERK1/2 (FR180204), p38 (SB203580) and JNK (SP600125). Replacement of epinephrine with forskolin + IBMX resulted in a marked increase in mucin production in NHBE cells in response to IL-13, and treatment with the inhibitory cAMP analogue Rp-cAMPS decreased mucin levels induced by epinephrine + IL-13. Our findings suggest that ß2AR signaling is required for mucin production in response to IL-13, and that mitogen activated protein kinases and cAMP are necessary for this effect. These data lend support to the notion that ß2AR-agonists may contribute to asthma exacerbations by increasing mucin production via activation of ß2ARs on epithelial cells.


Assuntos
Brônquios/citologia , Epinefrina/farmacologia , Células Epiteliais/metabolismo , Interleucina-13/farmacologia , Mucina-5AC/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Bovinos , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
15.
Cancer Res ; 74(19): 5631-43, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274033

RESUMO

Somatic missense mutations in the substrate-binding pocket of the E3 ubiquitin ligase adaptor SPOP are present in up to 15% of human prostate adenocarcinomas, but are rare in other malignancies, suggesting a prostate-specific mechanism of action. SPOP promotes ubiquitination and degradation of several protein substrates, including the androgen receptor (AR) coactivator SRC-3. However, the relative contributions that SPOP substrates may make to the pathophysiology of SPOP-mutant (mt) prostate adenocarcinomas are unknown. Using an unbiased bioinformatics approach, we determined that the gene expression profile of prostate adenocarcinoma cells engineered to express mt-SPOP overlaps greatly with the gene signature of both SRC-3 and AR transcriptional output, with a stronger similarity to AR than SRC-3. This finding suggests that in addition to its SRC-3-mediated effects, SPOP also exerts SRC-3-independent effects that are AR-mediated. Indeed, we found that wild-type (wt) but not prostate adenocarcinoma-associated mutants of SPOP promoted AR ubiquitination and degradation, acting directly through a SPOP-binding motif in the hinge region of AR. In support of these results, tumor xenografts composed of prostate adenocarcinoma cells expressing mt-SPOP exhibited higher AR protein levels and grew faster than tumors composed of prostate adenocarcinoma cells expressing wt-SPOP. Furthermore, genetic ablation of SPOP was sufficient to increase AR protein levels in mouse prostate. Examination of public human prostate adenocarcinoma datasets confirmed a strong link between transcriptomic profiles of mt-SPOP and AR. Overall, our studies highlight the AR axis as the key transcriptional output of SPOP in prostate adenocarcinoma and provide an explanation for the prostate-specific tumor suppressor role of wt-SPOP.


Assuntos
Adenocarcinoma/fisiopatologia , Genes Supressores de Tumor , Proteínas Nucleares/genética , Neoplasias da Próstata/fisiopatologia , Receptores Androgênicos/fisiologia , Proteínas Repressoras/genética , Transcrição Gênica/fisiologia , Adenocarcinoma/genética , Androgênios/fisiologia , Perfilação da Expressão Gênica , Humanos , Masculino , Mutação , Coativador 3 de Receptor Nuclear/fisiologia , Neoplasias da Próstata/genética
16.
Handb Exp Pharmacol ; 219: 387-403, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24292841

RESUMO

The obstructive lung disease asthma is treated by drugs that target, either directly or indirectly, G protein-coupled receptors (GPCRs). GPCRs coupled to Gq are the primary mediators of airway smooth muscle (ASM) contraction and increased airway resistance, whereas the Gs-coupled beta-2-adrenoceptor (ß2AR) promotes pro-relaxant signaling in and relaxation of ASM resulting in greater airway patency and reversal of life-threatening bronchoconstriction. In addition, GPCR-mediated functions in other cell types, including airway epithelium and hematopoietic cells, are involved in the control of lung inflammation that causes most asthma. The capacity of arrestins to regulate GPCR signaling, via either control of GPCR desensitization/resensitization or G protein-independent signaling, renders arrestins an intriguing therapeutic target for asthma and other obstructive lung diseases. This review will focus on the potential role of arrestins in those GPCR-mediated airway cell functions that are dysregulated in asthma.


Assuntos
Arrestinas/metabolismo , Asma/fisiopatologia , Receptores Acoplados a Proteínas G/metabolismo , Resistência das Vias Respiratórias/fisiologia , Animais , Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Terapia de Alvo Molecular , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Transdução de Sinais/fisiologia
18.
Neurosci Lett ; 548: 296-300, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23748072

RESUMO

Alzheimer's disease is characterized by progressive cognitive disturbances and neurotransmitter dysfunction. Previous studies targeting the adrenergic A1 pathway suggest that this plays a role in cognitive impairment in Alzheimer's disease. Previous studies have reported that acute treatment with A1 antagonists appears to improve behavioral deficits in rodent models of memory and behavioral impairment. In this study, we addressed whether the chronic administration of 8-cyclopentyl-1,3-dipropylxanthine, a potent and selective adenosine A1 antagonist, could reverse the memory deficits found in aged APPswe/PS1dE9 mice. Chronic treatment did not improve memory in the APPswe/PS1dE9 mouse model and resulted in reduced exploratory behavior, suggestive of reduced anxiety, and a worsening of long-term memory in nontransgenic mice. These results have important implications for understanding the mechanisms of A1 receptor modulation as a target in Alzheimer's disease therapy.


Assuntos
Antagonistas do Receptor A1 de Adenosina/administração & dosagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/fisiopatologia , Memória de Longo Prazo/efeitos dos fármacos , Xantinas/administração & dosagem , Doença de Alzheimer/complicações , Animais , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Resultado do Tratamento
19.
Proc Natl Acad Sci U S A ; 110(17): 6997-7002, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23559371

RESUMO

The p160 steroid receptor coactivators (SRCs) SRC-1, SRC-2 [nuclear receptor coactivator (NCOA)2], and SRC-3 [amplified in breast cancer 1 (AIB1)/NCOA3] are key pleiotropic "master regulators" of transcription factor activity necessary for cancer cell proliferation, survival, metabolism, and metastasis. SRC overexpression and overactivation occur in numerous human cancers and are associated with poor clinical outcomes and resistance to therapy. In prostate cancer (PC), the p160 SRCs play critical roles in androgen receptor transcriptional activity, cell proliferation, and resistance to androgen deprivation therapy. We recently demonstrated that the E3 ubiquitin ligase adaptor speckle-type poxvirus and zinc finger (POZ) domain protein (SPOP) interacts directly with SRC-3 and promotes its cullin 3-dependent ubiquitination and proteolysis in breast cancer, thus functioning as a potential tumor suppressor. Interestingly, somatic heterozygous missense mutations in the SPOP substrate-binding cleft recently were identified in up to 15% of human PCs (making SPOP the gene most commonly affected by nonsynonymous point mutations in PC), but their contribution to PC pathophysiology remains unknown. We now report that PC-associated SPOP mutants cannot interact with SRC-3 protein or promote its ubiquitination and degradation. Our data suggest that wild-type SPOP plays a critical tumor suppressor role in PC cells, promoting the turnover of SRC-3 protein and suppressing androgen receptor transcriptional activity. This tumor suppressor effect is abrogated by the PC-associated SPOP mutations. These studies provide a possible explanation for the role of SPOP mutations in PC, and highlight the potential of SRC-3 as a therapeutic target in PC.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas Nucleares/genética , Coativador 3 de Receptor Nuclear/metabolismo , Neoplasias da Próstata/genética , Proteínas Repressoras/genética , Análise de Variância , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Vetores Genéticos/genética , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Lentivirus , Masculino , Mutação de Sentido Incorreto/genética , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/fisiopatologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Androgênicos/metabolismo , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sais de Tetrazólio , Tiazóis
20.
ANZ J Surg ; 82(5): 348-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22507074

RESUMO

Aortic arch aneurysms involving the major vessels of the neck pose great challenges in their repair. Open repair of these aneurysms are associated with a significant morbidity and mortality. The major challenge for endovascular repair of these complex aneurysms is the maintenance of cerebral perfusion during stent implantation and long-term durability. This paper discusses preoperative planning and technical aspects to successful endovascular repair of a large aortic arch aneurysm involving the distal take-off of the left subclavian artery.


Assuntos
Aorta Torácica/cirurgia , Aneurisma Aórtico/cirurgia , Artéria Subclávia/cirurgia , Idoso , Aorta Torácica/diagnóstico por imagem , Aneurisma Aórtico/complicações , Aneurisma Aórtico/diagnóstico por imagem , Prótese Vascular , Implante de Prótese Vascular , Procedimentos Endovasculares , Hemoptise/etiologia , Humanos , Masculino , Stents , Artéria Subclávia/diagnóstico por imagem , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA