Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 246(3): 265-276, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32698129

RESUMO

Protein kinase D (PKD) is emerging as an important kinase regulating energy balance and glucose metabolism; however, whether hepatic PKD activity can be targeted to regulate these processes is currently unclear. In this study, hepatic PKD activity was reduced using adeno-associated virus vectors to express a dominant-negative (DN) version of PKD1, which impairs the action of all three PKD isoforms. In chow-fed mice, hepatic DN PKD expression increased whole-body glucose oxidation, but had only mild effects on glucose and insulin tolerance and no effects on glucose homeostasis following fasting and refeeding. However, circulating VLDL cholesterol was reduced under these conditions and was associated with hepatic fatty acid accumulation, but not lipids involved in lipoprotein synthesis. The limited effects on glucose homeostasis in DN PKD mice was despite reduced expression of gluconeogenic genes under both fasted and refed conditions, and enhanced pyruvate tolerance. The requirement for PKD for gluconeogenic capacity was supported by in vitro studies in cultured FAO hepatoma cells expressing DN PKD, which produced less glucose under basal conditions. Although these pathways are increased in obesity, the expression of DN PKD in the liver of mice fed a high-fat diet had no impact on glucose tolerance, insulin action, pyruvate tolerance or plasma VLDL. Together, these data suggest that PKD signalling in the liver regulates metabolic pathways involved in substrate redistribution under conditions of normal nutrient availability, but not under conditions of overnutrition such as in obesity.


Assuntos
VLDL-Colesterol/sangue , Fígado/enzimologia , Proteína Quinase C/metabolismo , Animais , Glicemia/metabolismo , Dieta Hiperlipídica , Masculino , Camundongos , Obesidade/sangue , Obesidade/enzimologia , Transdução de Sinais/fisiologia , Triglicerídeos/sangue
2.
FASEB J ; 31(6): 2592-2602, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28258188

RESUMO

Reciprocal regulation of hepatic glycolysis and gluconeogenesis contributes to systemic metabolic homeostasis. Recent evidence from lower order organisms has found that reversible post-translational modification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), particularly acetylation, contributes to the reciprocal regulation of glycolysis/gluconeogenesis. However, whether this occurs in mammalian hepatocytes in vitro or in vivo is unknown. Several proteomics studies have identified 4 lysine residues in critical regions of mammalian GAPDH that are altered by multiple post-translational modifications. In FAO hepatoma cells, mutation of all 4 lysine residues (4K-R GAPDH) to mimic their unmodified state reduced GAPDH glycolytic activity and glycolytic flux and increased gluconeogenic GAPDH activity and glucose production. Hepatic expression of 4K-R GAPDH in mice increased GAPDH gluconeogenic activity and the contribution of gluconeogenesis to endogenous glucose production in the unfed state. Consistent with the increased reliance on the energy-consuming gluconeogenic pathway, plasma free fatty acids and ketones were elevated in mice expressing 4K-R GAPDH, suggesting enhanced lipolysis and hepatic fatty acid oxidation. In normal mice, food withholding and refeeding, as well as hormonal regulators of reciprocal glycolysis/gluconeogenesis, such as insulin, glucagon, and norepinephrine, had no effect on global GAPDH acetylation. However, GAPDH acetylation was reduced in obese and type 2 diabetic db/db mice. These findings show that post-translational modification of GAPDH lysine residues regulates hepatic and systemic metabolism, revealing an unappreciated role for hepatic GAPDH in substrate selection and utilization.-Bond, S. T., Howlett, K. F., Kowalski, G. M., Mason, S., Connor, T., Cooper, A., Streltsov, V., Bruce, C. R., Walder, K. R., McGee, S. L. Lysine post-translational modification of glyceraldehyde-3-phosphate dehydrogenase regulates hepatic and systemic metabolism.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Fígado/metabolismo , Lisina , Processamento de Proteína Pós-Traducional/fisiologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Camundongos , Ratos
3.
Cancer Discov ; 4(4): 423-33, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24469106

RESUMO

UNLABELLED: Deregulated glucose metabolism fulfills the energetic and biosynthetic requirements for tumor growth driven by oncogenes. Because inhibition of oncogenic BRAF causes profound reductions in glucose uptake and a strong clinical benefit in BRAF-mutant melanoma, we examined the role of energy metabolism in responses to BRAF inhibition. We observed pronounced and consistent decreases in glycolytic activity in BRAF-mutant melanoma cells. Moreover, we identified a network of BRAF-regulated transcription factors that control glycolysis in melanoma cells. Remarkably, this network of transcription factors, including hypoxia-inducible factor-1α, MYC, and MONDOA (MLXIP), drives glycolysis downstream of BRAF(V600), is critical for responses to BRAF inhibition, and is modulated by BRAF inhibition in clinical melanoma specimens. Furthermore, we show that concurrent inhibition of BRAF and glycolysis induces cell death in BRAF inhibitor (BRAFi)-resistant melanoma cells. Thus, we provide a proof-of-principle for treatment of melanoma with combinations of BRAFis and glycolysis inhibitors. SIGNIFICANCE: BRAF is suppress glycolysis and provide strong clinical benefi t in BRAF V600 melanoma. We show that BRAF inhibition suppresses glycolysis via a network of transcription factors that are critical for complete BRAFi responses. Furthermore, we provide evidence for the clinical potential of therapies that combine BRAFis with glycolysis inhibitors.


Assuntos
Glicólise/efeitos dos fármacos , Melanoma/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células HEK293 , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/patologia , Piperazinas/farmacologia , Piridinas/farmacologia , Sulfonamidas/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vemurafenib
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA