Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 162(3): 877-889.e7, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861219

RESUMO

BACKGROUND & AIMS: Excessive shedding of apoptotic enterocytes into the intestinal lumen is observed in inflammatory bowel disease and is correlated with disease relapse. Based on their cytolytic capacity and surveillance behavior, we investigated whether intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) are actively involved in the shedding of enterocytes into the lumen. METHODS: Intravital microscopy was performed on GFP γδ T cell reporter mice treated with intraperitoneal lipopolysaccharide (10 mg/kg) for 90 minutes to induce tumor necrosis factor-mediated apoptosis. Cell shedding in various knockout or transgenic mice in the presence or absence of blocking antibody was quantified by immunostaining for ZO-1 funnels and cleaved caspase-3 (CC3). Granzyme A and granzyme B release from ex vivo-stimulated γδ IELs was quantified by enzyme-linked immunosorbent assay. Immunostaining for γδ T cell receptor and CC3 was performed on duodenal and ileal biopsies from controls and patients with Crohn's disease. RESULTS: Intravital microscopy of lipopolysaccharide-treated mice revealed that γδ IELs make extended contact with shedding enterocytes. These prolonged interactions require CD103 engagement by E-cadherin, and CD103 knockout or blockade significantly reduced lipopolysaccharide-induced shedding. Furthermore, we found that granzymes A and B, but not perforin, are required for cell shedding. These extracellular granzymes are released by γδ IELs both constitutively and after CD103/E-cadherin ligation. Moreover, we found that the frequency of γδ IEL localization to CC3-positive enterocytes is increased in Crohn's disease biopsies compared with healthy controls. CONCLUSIONS: Our results uncover a previously unrecognized role for γδ IELs in facilitating tumor necrosis factor-mediated shedding of apoptotic enterocytes via CD103-mediated extracellular granzyme release.


Assuntos
Antígenos CD/metabolismo , Doença de Crohn/metabolismo , Enterócitos/fisiologia , Granzimas/metabolismo , Cadeias alfa de Integrinas/metabolismo , Linfócitos Intraepiteliais/fisiologia , Adolescente , Adulto , Animais , Antígenos CD/genética , Apoptose , Caderinas/metabolismo , Caspase 3/metabolismo , Doença de Crohn/patologia , Duodeno/patologia , Enterócitos/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Íleo/patologia , Cadeias alfa de Integrinas/genética , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Linfócitos Intraepiteliais/enzimologia , Linfócitos Intraepiteliais/patologia , Microscopia Intravital , Jejuno/imunologia , Jejuno/patologia , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
2.
J Biol Chem ; 297(1): 100848, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058200

RESUMO

Within the intestinal epithelium, regulation of intracellular protein and vesicular trafficking is of utmost importance for barrier maintenance, immune responses, and tissue polarity. RAB11A is a small GTPase that mediates the anterograde transport of protein cargos to the plasma membrane. Loss of RAB11A-dependent trafficking in mature intestinal epithelial cells results in increased epithelial proliferation and nuclear accumulation of Yes-associated protein (YAP), a key Hippo-signaling transducer that senses cell-cell contacts and regulates tissue growth. However, it is unclear how RAB11A regulates YAP intracellular localizations. In this report, we examined the relationship of RAB11A to epithelial junctional complexes, YAP, and the associated consequences on colonic epithelial tissue repair. We found that RAB11A controls the biochemical associations of YAP with multiple components of adherens and tight junctions, including α-catenin, ß-catenin, and Merlin, a tumor suppressor. In the absence of RAB11A and Merlin, we observed enhanced YAP-ß-catenin complex formation and nuclear translocation. Upon chemical injury to the intestine, mice deficient in RAB11A were found to have reduced epithelial integrity, decreased YAP localization to adherens and tight junctions, and increased nuclear YAP accumulation in the colon epithelium. Thus, RAB11A-regulated trafficking regulates the Hippo-YAP signaling pathway for rapid reparative response after tissue injury.


Assuntos
Proteínas de Ciclo Celular/genética , Colite/genética , Neurofibromina 2/genética , Fatores de Transcrição/genética , beta Catenina/genética , Proteínas rab de Ligação ao GTP/genética , Junções Aderentes/genética , Animais , Células CACO-2 , Proliferação de Células/genética , Colite/induzido quimicamente , Colite/patologia , Colo/crescimento & desenvolvimento , Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Epitélio/crescimento & desenvolvimento , Epitélio/patologia , Humanos , Camundongos , Junções Íntimas/genética , alfa Catenina/genética
3.
J Biol Chem ; 296: 100488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662399

RESUMO

Differentiation of mesenchymal stem cells into adipocyte requires coordination of external stimuli and depends upon the functionality of the primary cilium. The Rab8 small GTPases are regulators of intracellular transport of membrane-bound structural and signaling cargo. However, the physiological contribution of the intrinsic trafficking network controlled by Rab8 to mesenchymal tissue differentiation has not been fully defined in vivo and in primary tissue cultures. Here, we show that mouse embryonic fibroblasts (MEFs) lacking Rab8 have severely impaired adipocyte differentiation in vivo and ex vivo. Immunofluorescent localization and biochemical analyses of Rab8a-deficient, Rab8b-deficient, and Rab8a and Rab8b double-deficient MEFs revealed that Rab8 controls the Lrp6 vesicular compartment, clearance of basal signalosome, traffic of frizzled two receptor, and thereby a proper attenuation of Wnt signaling in differentiating MEFs. Upon induction of adipogenesis program, Rab8a- and Rab8b-deficient MEFs exhibited severely defective lipid-droplet formation and abnormal cilia morphology, despite overall intact cilia growth and ciliary cargo transport. Our results suggest that intracellular Rab8 traffic regulates induction of adipogenesis via proper positioning of Wnt receptors for signaling control in mesenchymal cells.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Via de Sinalização Wnt , Proteínas rab de Ligação ao GTP/metabolismo , Adipogenia/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Cílios/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Proteínas rab de Ligação ao GTP/genética
4.
Immunity ; 53(2): 398-416.e8, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814028

RESUMO

Paneth cells are the primary source of C-type lysozyme, a ß-1,4-N-acetylmuramoylhydrolase that enzymatically processes bacterial cell walls. Paneth cells are normally present in human cecum and ascending colon, but are rarely found in descending colon and rectum; Paneth cell metaplasia in this region and aberrant lysozyme production are hallmarks of inflammatory bowel disease (IBD) pathology. Here, we examined the impact of aberrant lysozyme production in colonic inflammation. Targeted disruption of Paneth cell lysozyme (Lyz1) protected mice from experimental colitis. Lyz1-deficiency diminished intestinal immune responses to bacterial molecular patterns and resulted in the expansion of lysozyme-sensitive mucolytic bacteria, including Ruminococcus gnavus, a Crohn's disease-associated pathobiont. Ectopic lysozyme production in colonic epithelium suppressed lysozyme-sensitive bacteria and exacerbated colitis. Transfer of R. gnavus into Lyz1-/- hosts elicited a type 2 immune response, causing epithelial reprograming and enhanced anti-colitogenic capacity. In contrast, in lysozyme-intact hosts, processed R. gnavus drove pro-inflammatory responses. Thus, Paneth cell lysozyme balances intestinal anti- and pro-inflammatory responses, with implications for IBD.


Assuntos
Clostridiales/imunologia , Colite Ulcerativa/patologia , Muramidase/genética , Muramidase/metabolismo , Celulas de Paneth/metabolismo , Animais , Clostridiales/genética , Colite Ulcerativa/microbiologia , Doença de Crohn/patologia , Feminino , Microbioma Gastrointestinal/genética , Células Caliciformes/citologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT6/genética
5.
JCI Insight ; 5(16)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686657

RESUMO

The regulatory mechanisms enabling the intestinal epithelium to maintain a high degree of regenerative capacity during mucosal injury remain unclear. Ex vivo survival and clonogenicity of intestinal stem cells (ISCs) strictly required growth response mediated by cell division control 42 (Cdc42) and Cdc42-deficient enteroids to undergo rapid apoptosis. Mechanistically, Cdc42 engaging with EGFR was required for EGF-stimulated, receptor-mediated endocytosis and sufficient to promote MAPK signaling. Proteomics and kinase analysis revealed that a physiologically, but nonconventionally, spliced Cdc42 variant 2 (V2) exhibited stronger MAPK-activating capability. Human CDC42-V2 is transcriptionally elevated in some colon tumor tissues. Accordingly, mice engineered to overexpress Cdc42-V2 in intestinal epithelium showed elevated MAPK signaling, enhanced regeneration, and reduced mucosal damage in response to irradiation. Overproducing Cdc42-V2 specifically in mouse ISCs enhanced intestinal regeneration following injury. Thus, the intrinsic Cdc42-MAPK program is required for intestinal epithelial regeneration, and elevating this signaling cascade is capable of initiating protection from genotoxic injury.


Assuntos
Receptores ErbB/metabolismo , Mucosa Intestinal/fisiologia , Regeneração/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Processamento Alternativo , Animais , Sobrevivência Celular , Endocitose/fisiologia , Células HEK293 , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos da radiação , Sistema de Sinalização das MAP Quinases , Camundongos Knockout , Camundongos Transgênicos , Proteína cdc42 de Ligação ao GTP/genética
6.
Cancer Res ; 79(16): 4099-4112, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31239271

RESUMO

The effects of polarized membrane trafficking in mature epithelial tissue on cell growth and cancer progression have not been fully explored in vivo. A majority of colorectal cancers have reduced and mislocalized Rab11, a small GTPase dedicated to trafficking of recycling endosomes. Patients with low Rab11 protein expression have poor survival rates. Using genetic models across species, we show that intact recycling endosome function restrains aberrant epithelial growth elicited by APC or RAS mutations. Loss of Rab11 protein led to epithelial dysplasia in early animal development and synergized with oncogenic pathways to accelerate tumor progression initiated by carcinogen, genetic mutation, or aging. Transcriptomic analysis uncovered an immediate expansion of the intestinal stem cell pool along with cell-autonomous Yki/Yap activation following disruption of Rab11a-mediated recycling endosomes. Intestinal tumors lacking Rab11a traffic exhibited marked elevation of nuclear Yap, upd3/IL6-Stat3, and amphiregulin-MAPK signaling, whereas suppression of Yki/Yap or upd3/IL6 reduced gut epithelial dysplasia and hyperplasia. Examination of Rab11a function in enteroids or cultured cell lines suggested that this endosome unit is required for suppression of the Yap pathway by Hippo kinases. Thus, recycling endosomes in mature epithelia constitute key tumor suppressors, loss of which accelerates carcinogenesis. SIGNIFICANCE: Recycling endosome traffic in mature epithelia constitutes a novel tumor suppressing mechanism.


Assuntos
Neoplasias Colorretais/metabolismo , Endossomos/metabolismo , Células Epiteliais/patologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Animais Geneticamente Modificados , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Células Epiteliais/metabolismo , Via de Sinalização Hippo , Humanos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , Proteínas rab de Ligação ao GTP/genética
7.
Cell Stem Cell ; 23(1): 46-59.e5, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29887318

RESUMO

Paneth cells are post-mitotic intestinal epithelial cells supporting the stem cell niche and mucosal immunity. Paneth cell pathologies are observed in various gastrointestinal diseases, but their plasticity and response to genomic and environmental challenges remain unclear. Using a knockin allele engineered at the mouse Lyz1 locus, we performed detailed Paneth cell-lineage tracing. Irradiation induced a subset of Paneth cells to proliferate and differentiate into villus epithelial cells. RNA sequencing (RNA-seq) revealed that Paneth cells sorted from irradiated mice acquired a stem cell-like transcriptome; when cultured in vitro, these individual Paneth cells formed organoids. Irradiation activated Notch signaling, and forced expression of Notch intracellular domain (NICD) in Paneth cells, but not Wnt/ß-catenin pathway activation, induced their dedifferentiation. This study documents Paneth cell plasticity, particularly their ability to participate in epithelial replenishment following stem cell loss, adding to a growing body of knowledge detailing the molecular pathways controlling injury-induced regeneration.


Assuntos
Celulas de Paneth/patologia , Receptores Notch/metabolismo , Adenoma/tratamento farmacológico , Adenoma/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Injeções Intraperitoneais , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Celulas de Paneth/efeitos dos fármacos , Receptores Notch/antagonistas & inibidores , Tamoxifeno/administração & dosagem , Tamoxifeno/farmacologia
8.
FASEB J ; 31(2): 598-609, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28148781

RESUMO

The molecular mechanisms leading to and responsible for age-related, sporadic Alzheimer's disease (AD) remain largely unknown. It is well documented that aging patients with elevated levels of the amino acid metabolite homocysteine (Hcy) are at high risk of developing AD. We investigated the impact of Hcy on molecular clearance pathways in mammalian cells, including in vitro cultured induced pluripotent stem cell-derived forebrain neurons and in vivo neurons in mouse brains. Exposure to Hcy resulted in up-regulation of the mechanistic target of rapamycin complex 1 (mTORC1) activity, one of the major kinases in cells that is tightly linked to anabolic and catabolic pathways. Hcy is sensed by a constitutive protein complex composed of leucyl-tRNA-synthetase and folliculin, which regulates mTOR tethering to lysosomal membranes. In hyperhomocysteinemic human cells and cystathionine ß-synthase-deficient mouse brains, we find an acute and chronic inhibition of the molecular clearance of protein products resulting in a buildup of abnormal proteins, including ß-amyloid and phospho-Tau. Formation of these protein aggregates leads to AD-like neurodegeneration. This pathology can be prevented by inhibition of mTORC1 or by induction of autophagy. We conclude that an increase of intracellular Hcy levels predisposes neurons to develop abnormal protein aggregates, which are hallmarks of AD and its associated onset and pathophysiology with age.-Khayati, K., Antikainen, H., Bonder, E. M., Weber, G. F., Kruger, W. D., Jakubowski, H., Dobrowolski, R. The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice.


Assuntos
Autofagia/fisiologia , Regulação da Expressão Gênica/fisiologia , Homocisteína/metabolismo , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/genética , Serina-Treonina Quinases TOR/genética
9.
Cancer Res ; 74(19): 5480-92, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25113996

RESUMO

Mutations in the APC or ß-catenin genes are well-established initiators of colorectal cancer, yet modifiers that facilitate the survival and progression of nascent tumor cells are not well defined. Using genetic and pharmacologic approaches in mouse colorectal cancer and human colorectal cancer xenograft models, we show that incipient intestinal tumor cells activate CDC42, an APC-interacting small GTPase, as a crucial step in malignant progression. In the mouse, Cdc42 ablation attenuated the tumorigenicity of mutant intestinal cells carrying single APC or ß-catenin mutations. Similarly, human colorectal cancer with relatively higher levels of CDC42 activity was particularly sensitive to CDC42 blockade. Mechanistic studies suggested that Cdc42 may be activated at different levels, including at the level of transcriptional activation of the stem cell-enriched Rho family exchange factor Arhgef4. Our results indicate that early-stage mutant intestinal epithelial cells must recruit the pleiotropic functions of Cdc42 for malignant progression, suggesting its relevance as a biomarker and therapeutic target for selective colorectal cancer intervention.


Assuntos
Neoplasias Colorretais/patologia , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , beta Catenina/genética , beta Catenina/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(21): 7695-700, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821761

RESUMO

The intestinal stem cell fuels the highest rate of tissue turnover in the body and has been implicated in intestinal disease and cancer; understanding the regulatory mechanisms controlling intestinal stem cell physiology is of great importance. Here, we provide evidence that the transcription factor YY1 is essential for intestinal stem cell renewal. We observe that YY1 loss skews normal homeostatic cell turnover, with an increase in proliferating crypt cells and a decrease in their differentiated villous progeny. Increased crypt cell numbers come at the expense of Lgr5(+) stem cells. On YY1 deletion, Lgr5(+) cells accelerate their commitment to the differentiated population, exhibit increased levels of apoptosis, and fail to maintain stem cell renewal. Loss of Yy1 in the intestine is ultimately fatal. Mechanistically, YY1 seems to play a role in stem cell energy metabolism, with mitochondrial complex I genes bound directly by YY1 and their transcript levels decreasing on YY1 loss. These unappreciated YY1 functions broaden our understanding of metabolic regulation in intestinal stem cell homeostasis.


Assuntos
Divisão Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Intestinos/citologia , Mitocôndrias/metabolismo , Células-Tronco/fisiologia , Fator de Transcrição YY1/metabolismo , Animais , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Análise em Microsséries , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo , Fator de Transcrição YY1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA