Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 154: 105336, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33753290

RESUMO

In Huntington's disease (HD), the mutant huntingtin (mHtt) accumulates as toxic aggregates in the striatum tissue, with deleterious effects on motor-coordination and cognitive functions. Reducing the levels of mHtt is therefore a promising therapeutic strategy. We have previously reported that GSK-3 is a negative regulator of the autophagy/lysosome pathway, which is responsible for intracellular degradation, and is critically important for maintaining neuronal vitality. Thus, we hypothesized that inhibition of GSK-3 may trigger mHtt clearance thereby reducing mHtt cytotoxicity and improving HD symptoms. Here, we demonstrate that depletion or suppression of autophagy results in a massive accumulation of mHtt aggregates. Accordingly, mHtt aggregates were localized in lysosomes, but, mostly mislocalized from lysosomes in the absence of functional autophagy. Overexpression of GSK-3, particularly the α isozyme, increased the number of mHtt aggregates, while silencing GSK-3α/ß, or treatment with a selective GSK-3 inhibitor, L807mts, previously described by us, reduced the amounts of mHtt aggregates. This effect was mediated by increased autophagic and lysosomal activity. Treating R6/2 mouse model of HD with L807mts, reduced striatal mHtt aggregates and elevated autophagic and lysosomal markers. The L807mts treatment also reduced hyperglycemia and improved motor-coordination functions in these mice. In addition, L807mts restored the expression levels of Sirt1, a critical neuroprotective factor in the HD striatum, along with its targets BDNF, DRPP-32, and active Akt, all provide neurotrophic/pro-survival support and typically decline in the HD brain. Our results provide strong evidence for a role for GSK-3 in the regulation of mHtt dynamics, and demonstrate the benefits of GSK-3 inhibition in reducing mHtt toxicity, providing neuroprotective support, and improving HD symptoms.


Assuntos
Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Animais , Linhagem Celular Tumoral , Quinase 3 da Glicogênio Sintase/genética , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA