RESUMO
Encounters with pathogens and other molecules can imprint long-lasting effects on our immune system, influencing future physiological outcomes. Given the wide range of microbes to which humans are exposed, their collective impact on health is not fully understood. To explore relations between exposures and biological aging and inflammation, we profiled an antibody-binding repertoire against 2,815 microbial, viral, and environmental peptides in a population cohort of 1,443 participants. Utilizing antibody-binding as a proxy for past exposures, we investigated their impact on biological aging, cell composition, and inflammation. Immune response against cytomegalovirus (CMV), rhinovirus, and gut bacteria relates with telomere length. Single-cell expression measurements identified an effect of CMV infection on the transcriptional landscape of subpopulations of CD8 and CD4 T-cells. This examination of the relationship between microbial exposures and biological aging and inflammation highlights a role for chronic infections (CMV and Epstein-Barr virus) and common pathogens (rhinoviruses and adenovirus C).
RESUMO
Cancer genomes harbor a broad spectrum of structural variants (SVs) driving tumorigenesis, a relevant subset of which escape discovery using short-read sequencing. We employed Oxford Nanopore Technologies (ONT) long-read sequencing in a paired diagnostic and post-therapy medulloblastoma to unravel the haplotype-resolved somatic genetic and epigenetic landscape. We assembled complex rearrangements, including a 1.55-Mbp chromothripsis event, and we uncover a complex SV pattern termed templated insertion (TI) thread, characterized by short (mostly <1 kb) insertions showing prevalent self-concatenation into highly amplified structures of up to 50 kbp in size. TI threads occur in 3% of cancers, with a prevalence up to 74% in liposarcoma, and frequent colocalization with chromothripsis. We also perform long-read-based methylome profiling and discover allele-specific methylation (ASM) effects, complex rearrangements exhibiting differential methylation, and differential promoter methylation in cancer-driver genes. Our study shows the advantage of long-read sequencing in the discovery and characterization of complex somatic rearrangements.
RESUMO
We present novoRNABreak, a unified framework for cancer specific novel splice junction and fusion transcript detection in RNA-seq data obtained from human cancer samples. novoRNABreak is based on a local assembly model, which offers a tradeoff between the alignment-based and de novo whole transcriptome assembly (WTA) methods. This approach is accurate and sensitive in assembling novel junctions that are difficult to directly align or have multiple alignments. Additionally, it is more efficient due to the strategy that focuses on junctions rather than full length transcripts. The performance of novoRNABreak is demonstrated by a comprehensive set of experiments using synthetic data generated based on genome reference, as well as real RNA-seq data from breast cancer and prostate cancer samples. The results show that our tool has a better performance by fully utilizing unmapped reads and precisely identifying the junctions where short reads or small exons have multiple alignments. novoRNABreak is a fully-fledged program available on GitHub (https://github.com/KChen-lab/novoRNABreak).
RESUMO
Bulk and single-cell DNA sequencing has enabled reconstructing clonal substructures of somatic tissues from frequency and cooccurrence patterns of somatic variants. However, approaches to characterize phenotypic variations between clones are not established. Here we present cardelino (https://github.com/single-cell-genetics/cardelino), a computational method for inferring the clonal tree configuration and the clone of origin of individual cells assayed using single-cell RNA-seq (scRNA-seq). Cardelino flexibly integrates information from imperfect clonal trees inferred based on bulk exome-seq data, and sparse variant alleles expressed in scRNA-seq data. We apply cardelino to a published cancer dataset and to newly generated matched scRNA-seq and exome-seq data from 32 human dermal fibroblast lines, identifying hundreds of differentially expressed genes between cells from different somatic clones. These genes are frequently enriched for cell cycle and proliferation pathways, indicating a role for cell division genes in somatic evolution in healthy skin.
Assuntos
Fibroblastos/metabolismo , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Software , Algoritmos , Ciclo Celular , Proliferação de Células , Humanos , Melanoma , Mutação , TranscriptomaRESUMO
The MHC region is highly associated with autoimmune and infectious diseases. Here we conduct an in-depth interrogation of associations between genetic variation, gene expression and disease. We create a comprehensive map of regulatory variation in the MHC region using WGS from 419 individuals to call eight-digit HLA types and RNA-seq data from matched iPSCs. Building on this regulatory map, we explored GWAS signals for 4083 traits, detecting colocalization for 180 disease loci with eQTLs. We show that eQTL analyses taking HLA type haplotypes into account have substantially greater power compared with only using single variants. We examined the association between the 8.1 ancestral haplotype and delayed colonization in Cystic Fibrosis, postulating that downregulation of RNF5 expression is the likely causal mechanism. Our study provides insights into the genetic architecture of the MHC region and pinpoints disease associations that are due to differential expression of HLA genes and non-HLA genes.
Assuntos
Fibrose Cística/genética , Predisposição Genética para Doença , Complexo Principal de Histocompatibilidade/genética , Locos de Características Quantitativas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Mapeamento Cromossômico , Fibrose Cística/patologia , Feminino , Estudo de Associação Genômica Ampla , Antígenos HLA/genética , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , RNA-Seq , Adulto JovemRESUMO
While the link between diet-induced changes in gut microbiota and lipid metabolism in metabolic syndrome (MetS) has been established, the contribution of host genetics is rather unexplored. As several findings suggested a role for the lysosomal lipid transporter Niemann-Pick type C1 (NPC1) in macrophages during MetS, we here explored whether a hematopoietic Npc1 mutation, induced via bone marrow transplantation, influences gut microbiota composition in low-density lipoprotein receptor knockout (Ldlr-/-) mice fed a high-fat, high-cholesterol (HFC) diet for 12 weeks. Ldlr-/- mice fed a HFC diet mimic a human plasma lipoprotein profile and show features of MetS, providing a model to explore the role of host genetics on gut microbiota under MetS conditions. Fecal samples were used to profile the microbial composition by 16 s ribosomal RNA gene sequencing. The hematopoietic Npc1 mutation shifted the gut microbiota composition and increased microbial richness and diversity. Variations in plasma lipid levels correlated with microbial diversity and richness as well as with several bacterial genera. This study suggests that host genetic influences on lipid metabolism affect the gut microbiome under MetS conditions. Future research investigating the role of host genetics on gut microbiota might therefore lead to identification of diagnostic and therapeutic targets for MetS.
Assuntos
Microbioma Gastrointestinal , Células-Tronco Hematopoéticas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndrome Metabólica/microbiologia , Animais , Transplante de Medula Óssea , Colesterol na Dieta , Dieta Hiperlipídica , Feminino , Granuloma/metabolismo , Hepatócitos/metabolismo , Inflamação , Células de Kupffer , Metabolismo dos Lipídeos , Fígado/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Proteína C1 de Niemann-Pick , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA Ribossômico 16S/metabolismo , Receptores de LDL/genéticaRESUMO
Several gastrointestinal diseases show a sex imbalance, although the underlying (patho)physiological mechanisms behind this are not well understood. The gut microbiome may be involved in this process, forming a complex interaction with host immune system, sex hormones, medication and other environmental factors. Here we performed sex-specific analyses of fecal microbiota composition in 1135 individuals from a population-based cohort. The overall gut microbiome composition of females and males was significantly different (p = 0.001), with females showing a greater microbial diversity (p = 0.009). After correcting for the effects of intrinsic factors, smoking, diet and medications, female hormonal factors such as the use of oral contraceptives and undergoing an ovariectomy were associated with microbial species and pathways. Females had a higher richness of antibiotic-resistance genes, with the most notable being resistance to the lincosamide nucleotidyltransferase (LNU) gene family. The higher abundance of resistance genes is consistent with the greater prescription of the Macrolide-Lincosamide-Streptogramin classes of antibiotics to females. Furthermore, we observed an increased resistance to aminoglycosides in females with self-reported irritable bowel syndrome. These results throw light upon the effects of common medications that are differentially prescribed between sexes and highlight the importance of sex-specific analysis when studying the gut microbiome and resistome.
Assuntos
Antibacterianos/farmacologia , Biodiversidade , Resistência Microbiana a Medicamentos/genética , Microbioma Gastrointestinal/genética , Metagenoma/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Fezes/microbiologia , Feminino , Genes Bacterianos/genética , Humanos , Síndrome do Intestino Irritável/microbiologia , Lincosamidas/farmacologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores Sexuais , Adulto JovemRESUMO
Educational attainment is a key behavioural measure in studies of cognitive and physical health, and socioeconomic status. We measured DNA methylation at 410,746 CpGs (N = 4152) and identified 58 CpGs associated with educational attainment at loci characterized by pleiotropic functions shared with neuronal, immune and developmental processes. Associations overlapped with those for smoking behaviour, but remained after accounting for smoking at many CpGs: Effect sizes were on average 28% smaller and genome-wide significant at 11 CpGs after adjusting for smoking and were 62% smaller in never smokers. We examined sources and biological implications of education-related methylation differences, demonstrating correlations with maternal prenatal folate, smoking and air pollution signatures, and associations with gene expression in cis, dynamic methylation in foetal brain, and correlations between blood and brain. Our findings show that the methylome of lower-educated people resembles that of smokers beyond effects of their own smoking behaviour and shows traces of various other exposures.
RESUMO
OBJECTIVE: Patients with IBD display substantial heterogeneity in clinical characteristics. We hypothesise that individual differences in the complex interaction of the host genome and the gut microbiota can explain the onset and the heterogeneous presentation of IBD. Therefore, we performed a case-control analysis of the gut microbiota, the host genome and the clinical phenotypes of IBD. DESIGN: Stool samples, peripheral blood and extensive phenotype data were collected from 313 patients with IBD and 582 truly healthy controls, selected from a population cohort. The gut microbiota composition was assessed by tag-sequencing the 16S rRNA gene. All participants were genotyped. We composed genetic risk scores from 11 functional genetic variants proven to be associated with IBD in genes that are directly involved in the bacterial handling in the gut: NOD2, CARD9, ATG16L1, IRGM and FUT2. RESULTS: Strikingly, we observed significant alterations of the gut microbiota of healthy individuals with a high genetic risk for IBD: the IBD genetic risk score was significantly associated with a decrease in the genus Roseburia in healthy controls (false discovery rate 0.017). Moreover, disease location was a major determinant of the gut microbiota: the gut microbiota of patients with colonic Crohn's disease (CD) is different from that of patients with ileal CD, with a decrease in alpha diversity associated to ileal disease (p=3.28×10-13). CONCLUSIONS: We show for the first time that genetic risk variants associated with IBD influence the gut microbiota in healthy individuals. Roseburia spp are acetate-to-butyrate converters, and a decrease has already been observed in patients with IBD.
Assuntos
Microbioma Gastrointestinal/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/microbiologia , Adulto , Estudos de Casos e Controles , Colite Ulcerativa/genética , Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Doença de Crohn/genética , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Disbiose/complicações , Disbiose/genética , Disbiose/microbiologia , Fezes/microbiologia , Feminino , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Humanos , Doenças Inflamatórias Intestinais/patologia , Masculino , Pessoa de Meia-Idade , Medição de Risco/métodos , Índice de Gravidade de DoençaRESUMO
BACKGROUND: DNA methylation has been found to associate with disease, aging and environmental exposure, but it is unknown how genome, environment and disease influence DNA methylation dynamics in childhood. RESULTS: By analysing 538 paired DNA blood samples from children at birth and at 4-5 years old and 726 paired samples from children at 4 and 8 years old from four European birth cohorts using the Illumina Infinium Human Methylation 450 k chip, we have identified 14,150 consistent age-differential methylation sites (a-DMSs) at epigenome-wide significance of p < 1.14 × 10-7. Genes with an increase in age-differential methylation were enriched in pathways related to 'development', and were more often located in bivalent transcription start site (TSS) regions, which can silence or activate expression of developmental genes. Genes with a decrease in age-differential methylation were involved in cell signalling, and enriched on H3K27ac, which can predict developmental state. Maternal smoking tended to decrease methylation levels at the identified da-DMSs. We also found 101 a-DMSs (0.71%) that were regulated by genetic variants using cis-differential Methylation Quantitative Trait Locus (cis-dMeQTL) mapping. Moreover, a-DMS-associated genes during early development were significantly more likely to be linked with disease. CONCLUSION: Our study provides new insights into the dynamic epigenetic landscape of the first 8 years of life.
Assuntos
Desenvolvimento Infantil , Metilação de DNA , Epigênese Genética , Epigenômica , Criança , Pré-Escolar , Ilhas de CpG , Epigenômica/métodos , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Exposição Materna/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Locos de Características Quantitativas , Fumar/efeitos adversosRESUMO
BACKGROUND: Epigenetic change is a hallmark of ageing but its link to ageing mechanisms in humans remains poorly understood. While DNA methylation at many CpG sites closely tracks chronological age, DNA methylation changes relevant to biological age are expected to gradually dissociate from chronological age, mirroring the increased heterogeneity in health status at older ages. RESULTS: Here, we report on the large-scale identification of 6366 age-related variably methylated positions (aVMPs) identified in 3295 whole blood DNA methylation profiles, 2044 of which have a matching RNA-seq gene expression profile. aVMPs are enriched at polycomb repressed regions and, accordingly, methylation at those positions is associated with the expression of genes encoding components of polycomb repressive complex 2 (PRC2) in trans. Further analysis revealed trans-associations for 1816 aVMPs with an additional 854 genes. These trans-associated aVMPs are characterized by either an age-related gain of methylation at CpG islands marked by PRC2 or a loss of methylation at enhancers. This distinct pattern extends to other tissues and multiple cancer types. Finally, genes associated with aVMPs in trans whose expression is variably upregulated with age (733 genes) play a key role in DNA repair and apoptosis, whereas downregulated aVMP-associated genes (121 genes) are mapped to defined pathways in cellular metabolism. CONCLUSIONS: Our results link age-related changes in DNA methylation to fundamental mechanisms that are thought to drive human ageing.
RESUMO
Deep sequencing of the gut microbiomes of 1135 participants from a Dutch population-based cohort shows relations between the microbiome and 126 exogenous and intrinsic host factors, including 31 intrinsic factors, 12 diseases, 19 drug groups, 4 smoking categories, and 60 dietary factors. These factors collectively explain 18.7% of the variation seen in the interindividual distance of microbial composition. We could associate 110 factors to 125 species and observed that fecal chromogranin A (CgA), a protein secreted by enteroendocrine cells, was exclusively associated with 61 microbial species whose abundance collectively accounted for 53% of microbial composition. Low CgA concentrations were seen in individuals with a more diverse microbiome. These results are an important step toward a better understanding of environment-diet-microbe-host interactions.
Assuntos
Bactérias/classificação , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Cromogranina A/análise , Cromogranina A/metabolismo , Dieta , Células Enteroendócrinas/metabolismo , Fezes/química , Fezes/microbiologia , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica , Países Baixos , Filogenia , RNA Ribossômico 16S/genéticaRESUMO
INTRODUCTION: Despite continuous efforts, not a single predictor of breast cancer chemotherapy resistance has made it into the clinic yet. However, it has become clear in recent years that breast cancer is a collection of molecularly distinct diseases. With ever increasing amounts of breast cancer data becoming available, we set out to study if gene expression based predictors of chemotherapy resistance that are specific for breast cancer subtypes can improve upon the performance of generic predictors. METHODS: We trained predictors of resistance that were specific for a subtype and generic predictors that were not specific for a particular subtype, i.e. trained on all subtypes simultaneously. Through a rigorous double-loop cross-validation we compared the performance of these two types of predictors on the different subtypes on a large set of tumors all profiled on the same expression platform (nâ=â394). We evaluated predictors based on either mRNA gene expression or clinical features. RESULTS: For HER2+, ER- breast cancer, subtype specific predictor based on clinical features outperformed the generic, non-specific predictor. This can be explained by the fact that the generic predictor included HER2 and ER status, features that are predictive over the whole set, but not within this subtype. In all other scenarios the generic predictors outperformed the subtype specific predictors or showed equal performance. CONCLUSIONS: Since it depends on the specific context which type of predictor - subtype specific or generic- performed better, it is highly recommended to evaluate both specific and generic predictors when attempting to predict treatment response in breast cancer.