Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Crit Care ; 61: 125-132, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33157308

RESUMO

PURPOSE: Optimal esophageal balloon filling volume (Vbest) depends on the intrathoracic pressure. During Sigh breath delivered by the ventilator machine, esophageal balloon is surrounded by elevated intrathoracic pressure that might require higher filling volume for accurate measure of tidal changes in esophageal pressure (Pes). The primary aim of our investigation was to evaluate and compare Vbest during volume controlled and pressure support breaths vs. Sigh breath. MATERIALS AND METHODS: Twenty adult patients requiring invasive volume-controlled ventilation (VCV) for hypoxemic acute respiratory failure were enrolled. After the insertion of a naso-gastric catheter equipped with 10 ml esophageal balloon, each patient underwent three 30-min trials as follows: VCV, pressure support ventilation (PSV), and PSV + Sigh. Sigh was added to PSV as 35 cmH2O pressure-controlled breath over 4 s, once per minute. PSV and PSV + Sigh were randomly applied and, at the end of each step, esophageal balloon calibration was performed. RESULTS: Vbest was higher for Sigh breath (4.5 [3.0-6.8] ml) compared to VCV (1.5 [1.0-2.9] ml, P = 0.0004) and PSV tidal breath (1.0 [0.5-2.4] ml, P < 0.0001). CONCLUSIONS: During Sigh breath, applying a calibrated approach for Pes assessment, a higher Vbest was required compared to VCV and PSV tidal breath.


Assuntos
Respiração com Pressão Positiva , Mecânica Respiratória , Adulto , Calibragem , Estudos Cross-Over , Humanos , Respiração Artificial , Volume de Ventilação Pulmonar
2.
Anesthesiology ; 133(1): 145-153, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32349074

RESUMO

BACKGROUND: Esophageal balloon calibration was proposed in acute respiratory failure patients to improve esophageal pressure assessment. In a clinical setting characterized by a high variability of abdominal load and intrathoracic pressure (i.e., pelvic robotic surgery), the authors hypothesized that esophageal balloon calibration could improve esophageal pressure measurements. Accordingly, the authors assessed the impact of esophageal balloon calibration compared to conventional uncalibrated approach during pelvic robotic surgery. METHODS: In 30 adult patients, scheduled for elective pelvic robotic surgery, calibrated end-expiratory and end-inspiratory esophageal pressure, and the associated respiratory variations were obtained at baseline, after pneumoperitoneum-Trendelenburg application, and with positive end-expiratory pressure (PEEP) administration and compared to uncalibrated values measured at 4-ml filling volume, as per manufacturer recommendation. Data are expressed as median and [25th, 75th percentile]. RESULTS: Ninety calibrations were successfully performed. Chest wall elastance worsened with pneumoperitoneum-Trendelenburg and PEEP (19.0 [15.5, 24.6] and 16.7 [11.4, 21.7] cm H2O/l) compared to baseline (8.8 [6.3, 9.8] cm H2O/l; P < 0.0001 for both comparisons). End-expiratory and end-inspiratory calibrated esophageal pressure progressively increased from baseline (3.7 [2.2, 6.0] and 7.7 [5.9, 10.2] cm H2O) to pneumoperitoneum-Trendelenburg (6.2 [3.8, 10.2] and 16.1 [13.1, 20.6] cm H2O; P = 0.014 and P < 0.001) and PEEP (8.8 [7.7, 15.6] and 18.9 [16.3, 22.0] cm H2O; P < 0.0001 vs. baseline for both comparison; P < 0.001 and P = 0.002 vs. pneumoperitoneum-Trendelenburg) and, at each study step, they were persistently lower than uncalibrated esophageal pressure (P < 0.0001 for all comparisons). Overall, difference among uncalibrated and calibrated esophageal pressure was 5.1 [3.8, 8.4] cm H2O at end-expiration and 3.8 [3.0, 6.3] cm H2O at end-inspiration. Uncalibrated esophageal pressure swing was always lower than calibrated one (P < 0.0001 for all comparisons) with a difference of -1.0 [-1.8, -0.4] cm H2O. CONCLUSIONS: In a clinical setting with variable chest wall mechanics, uncalibrated measurements substantially overestimated absolute values and underestimated respiratory variations of esophageal pressure. Calibration could substantially improve mechanical ventilation guided by esophageal pressure.


Assuntos
Esôfago/fisiologia , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Idoso , Algoritmos , Oclusão com Balão , Calibragem , Oscilação da Parede Torácica , Elasticidade , Feminino , Decúbito Inclinado com Rebaixamento da Cabeça , Humanos , Masculino , Pessoa de Meia-Idade , Pelve/cirurgia , Pneumoperitônio Artificial , Respiração com Pressão Positiva , Pressão , Testes de Função Respiratória , Procedimentos Cirúrgicos Robóticos/métodos
3.
J Clin Monit Comput ; 34(6): 1223-1231, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31792760

RESUMO

Oesophageal balloon calibration improves the oesophageal pressure (Pes) assessment during invasive controlled mechanical ventilation. The primary aim of the present investigation was to ascertain the feasibility of oesophageal balloon calibration during pressure support ventilation (PSV). Secondarily, the calibrated Pes (Pescal) was compared to uncalibrated one acquired at 4 ml-filling volume (PesV4), as per manufacturer recommendation. After a naso-gastric tube equipped with oesophageal balloon was correctly positioned in 21 adult patients undergoing invasive volume-controlled ventilation (VCV) for acute hypoxemic respiratory failure, the balloon was progressively inflated, applying a series of end-inspiratory and end-expiratory holds at each filling volume during VCV and PSV. Upon optimal balloon filling volume (Vbest) was identified, Pescal was computed by correcting the Pes measured at Vbest for the oesophageal wall pressure elicited at same filling volume. Finally, end-expiratory and end-inspiratory PesV4 were recorded too. A total of 42 calibrations, 21 per ventilatory mode, were performed. Vbest was 1.9 ± 1.6 ml in VCV and 1.7 ± 1.6 ml in PSV (p = 0.5217). PesV4 was overestimated compared to Pescal at end-expiration and end-inspiration (p <0.0001 for all comparisons) in both VCV (13.4 ± 3.4 cmH2O and 15.4 ± 3 cmH2O vs. 8.5 ± 2.9 cmH2O and 11.4 ± 3 cmH2O) and PSV (14.7 ± 4.2 cmH2O and 17 ± 3.9 cmH2O vs. 8.9 ± 3.4 cmH2O and 12.4 ± 3.9 cmH2O). In PSV, oesophageal balloon calibration is feasible and allows to obtain a reliable Pes assessment compared to uncalibrated approach.


Assuntos
Respiração com Pressão Positiva , Mecânica Respiratória , Adulto , Calibragem , Humanos , Estudo de Prova de Conceito , Respiração Artificial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA