Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 522(13): 3004-19, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24549606

RESUMO

Embryonic cuttlefish can first respond to a variety of sensory stimuli during early development in the egg capsule. To examine the neural basis of this ability, we investigated the emergence of sensory structures within the developing epidermis. We show that the skin facing the outer environment (not the skin lining the mantle cavity, for example) is derived from embryonic domains expressing the Sepia officinalis ortholog of pax3/7, a gene involved in epidermis specification in vertebrates. On the head, they are confined to discrete brachial regions referred to as "arm pillars" that expand and cover Sof-pax3/7-negative head ectodermal tissues. As revealed by the expression of the S. officinalis ortholog of elav1, an early marker of neural differentiation, the olfactory organs first differentiate at about stage 16 within Sof-pax3/7-negative ectodermal regions before they are covered by the definitive Sof-pax3/7-positive outer epithelium. In contrast, the eight mechanosensory lateral lines running over the head surface and the numerous other putative sensory cells in the epidermis, differentiate in the Sof-pax3/7-positive tissues at stages ∼24-25, after they have extended over the entire outer surfaces of the head and arms. Locations and morphologies of the various sensory cells in the olfactory organs and skin were examined using antibodies against acetylated tubulin during the development of S. officinalis and were compared with those in hatchlings of two other cephalopod species. The early differentiation of olfactory structures and the peculiar development of the epidermis with its sensory cells provide new perspectives for comparisons of developmental processes among molluscs.


Assuntos
Vias Aferentes/embriologia , Epiderme/embriologia , Epiderme/crescimento & desenvolvimento , Epiderme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sepia , Animais , Animais Recém-Nascidos , Cefalópodes/classificação , Cefalópodes/embriologia , Cefalópodes/metabolismo , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Embrião não Mamífero , Epiderme/inervação , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Sensação/fisiologia , Sepia/anatomia & histologia , Sepia/embriologia , Sepia/crescimento & desenvolvimento
2.
J Comp Neurol ; 521(7): 1482-96, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23047428

RESUMO

Among the Lophotrochozoa, centralization of the nervous system reaches an exceptional level of complexity in cephalopods, where the typical molluscan ganglia become highly developed and fuse into hierarchized lobes. It is known that ganglionic primordia initially emerge early and simultaneously during cephalopod embryogenesis but no data exist on the process of neuron differentiation in this group. We searched for members of the elav/hu family in the cuttlefish Sepia officinalis, since they are one of the first genetic markers of postmitotic neural cells. Two paralogs were identified and the expression of the most neural-specific gene, Sof-elav1, was characterized during embryogenesis. Sof-elav1 is expressed in all ganglia at one time of development, which provides the first genetic map of neurogenesis in a cephalopod. Our results unexpectedly revealed that Sof-elav1 expression is not similar and not coordinated in all the prospective ganglia. Both palliovisceral ganglia show extensive Sof-elav1 expression soon after emergence, showing that most of their cells differentiate into neurons at an early stage. On the contrary, other ganglia, and especially both cerebral ganglia that contribute to the main parts of the brain learning centers, show a late extensive Sof-elav1 expression. These delayed expressions in ganglia suggest that most ganglionic cells retain their proliferative capacities and postpone differentiation. In other molluscs, where a larval nervous system predates the development of the definitive adult nervous system, cerebral ganglia are among the first to mature. Thus, such a difference may constitute a cue in understanding the peculiar brain evolution in cephalopods.


Assuntos
Gânglios dos Invertebrados/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurogênese/fisiologia , Sepia/embriologia , Animais , Proteínas ELAV/genética , Embrião não Mamífero , Desenvolvimento Embrionário , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sepia/genética
3.
Am J Physiol Regul Integr Comp Physiol ; 303(4): R427-37, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22647292

RESUMO

Cephalopods have relatively high rates of protein synthesis compared to rates of protein degradation, along with minimal carbohydrate and lipid reserves. During food deprivation on board protein is catabolized as a metabolic fuel. The aim of the current study was to assess whether biochemical indices of protein synthesis and proteolytic mechanisms were altered in cuttlefish, Sepia officinalis, starved for 7 days. In mantle muscle, food deprivation is associated with a decrease in protein synthesis, as indicated by a decrease in the total RNA level and dephosphorylation of key signaling molecules, such as the eukaryote binding protein, 4E-BP1 (regulator of translation) and Akt. The ubiquitination-proteasome system (UPS) is activated as shown by an increase in the levels of proteasome ß-subunit mRNA, polyubiquitinated protein, and polyubiquitin mRNA. As well, cathepsin activity levels are increased, suggesting increased proteolysis through the lysosomal pathway. Together, these mechanisms could supply amino acids as metabolic fuels. In gill, the situation is quite different. It appears that during the first stages of starvation, both protein synthesis and protein degradation are enhanced in gill. This is based upon increased phosphorylation of 4E-BP1 and enhanced levels of UPS indicators, especially 20S proteasome activity and polyubiquitin mRNA. It is proposed that an increased protein turnover is related to gill remodeling perhaps to retain essential hemolymph-borne compounds.


Assuntos
Brânquias/metabolismo , Músculo Esquelético/metabolismo , Biossíntese de Proteínas/fisiologia , Sepia/metabolismo , Animais , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Privação de Alimentos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepia/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA