Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(3)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032734

RESUMO

Pancreatic ß cells are specialized for coupling glucose metabolism to insulin peptide production and secretion. Acute glucose exposure robustly and coordinately increases translation of proinsulin and proteins required for secretion of mature insulin peptide. By contrast, chronically elevated glucose levels that occur during diabetes impair ß cell insulin secretion and have been shown experimentally to suppress insulin translation. Whether translation of other genes critical for insulin secretion is similarly downregulated by chronic high glucose is unknown. Here, we used high-throughput ribosome profiling and nascent proteomics in MIN6 insulinoma cells to elucidate the genome-wide impact of sustained high glucose on ß cell mRNA translation. Before induction of ER stress or suppression of global translation, sustained high glucose suppressed glucose-stimulated insulin secretion and downregulated translation of not only insulin, but also mRNAs related to insulin secretory granule formation, exocytosis, and metabolism-coupled insulin secretion. Translation of these mRNAs was also downregulated in primary rat and human islets following ex vivo incubation with sustained high glucose and in an in vivo model of chronic mild hyperglycemia. Furthermore, translational downregulation decreased cellular abundance of these proteins. Our study uncovered a translational regulatory circuit during ß cell glucose toxicity that impairs expression of proteins with critical roles in ß cell function.


Assuntos
Hiperglicemia , Células Secretoras de Insulina , Ilhotas Pancreáticas , Neoplasias Pancreáticas , Ratos , Humanos , Animais , Secreção de Insulina , RNA Mensageiro/metabolismo , Insulina/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Peptídeos/metabolismo , Neoplasias Pancreáticas/metabolismo , Ilhotas Pancreáticas/metabolismo
2.
Front Endocrinol (Lausanne) ; 14: 1217729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822597

RESUMO

Diabetes constitutes a world-wide pandemic that requires searching for new treatments to halt its progression. Cellular senescence of pancreatic beta cells has been described as a major contributor to development and worsening of diabetes. The concept of reversibility of cellular senescence is critical as is the timing to take actions against this "dormant" senescent state. The reversal of cellular senescence can be considered as rejuvenation of the specific cell if it returns to the original "healthy state" and doesn't behave aberrantly as seen in some cancer cells. In rodents, treatment with senolytics and senomorphics blunted or prevented disease progression, however their use carry drawbacks. Modulators of cellular senescence is a new area of research that seeks to reverse the senescence. More research in each of these modalities should lead to new treatments to stop diabetes development and progression.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Senescência Celular , Diabetes Mellitus/tratamento farmacológico
3.
Proc Natl Acad Sci U S A ; 119(47): e2206923119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375063

RESUMO

Senescence in pancreatic beta cells plays a major role in beta cell dysfunction, which leads to impaired glucose homeostasis and diabetes. Therefore, prevention of beta cell senescence could reduce the risk of diabetes. Treatment of nonobese diabetic (NOD) mice, a model of type 1 autoimmune diabetes (T1D), with palmitic acid hydroxy stearic acids (PAHSAs), a novel class of endogenous lipids with antidiabetic and antiinflammatory effects, delays the onset and reduces the incidence of T1D from 82% with vehicle treatment to 35% with PAHSAs. Here, we show that a major mechanism by which PAHSAs protect islets of the NOD mice is by directly preventing and reversing the initial steps of metabolic stress-induced senescence. In vitro PAHSAs increased Mdm2 expression, which decreases the stability of p53, a key inducer of senescence-related genes. In addition, PAHSAs enhanced expression of protective genes, such as those regulating DNA repair and glutathione metabolism and promoting autophagy. We demonstrate the translational relevance by showing that PAHSAs prevent and reverse early stages of senescence in metabolically stressed human islets by the same Mdm2 mechanism. Thus, a major mechanism for the dramatic effect of PAHSAs in reducing the incidence of type 1 diabetes in NOD mice is decreasing cellular senescence; PAHSAs may have a similar benefit in humans.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Ácido Palmítico/farmacologia , Ácidos Esteáricos , Camundongos Endogâmicos NOD , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevenção & controle , Proteína Supressora de Tumor p53/genética , Senescência Celular/genética , Estresse Fisiológico , Proteínas Proto-Oncogênicas c-mdm2/genética
4.
J Clin Invest ; 131(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34128470

RESUMO

During progression to both types 1 and 2 diabetes (T1D, T2D), there is a striking loss of glucose-induced first-phase insulin release (FPIR), which is known to predict the onset of T1D. The contribution of reduced ß cell mass to the onset of hyperglycemia remains unclear. In this issue of the JCI, Mezza et al. report on their study of patients with pancreatic neoplasms before and after partial pancreatectomy to evaluate the impact of reduced ß cell mass on the development of diabetes. The authors found that reduced FPIR predicted diabetes when 50% of the pancreas was removed. These findings suggest that low or absent FPIR indicates that ß cell mass can no longer compensate for increased insulin needs. Notably, clinicians may use reduction of FPIR as a warning that progression to T2D is underway.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Células Secretoras de Insulina , Glucose , Humanos , Insulina
5.
Mol Metab ; 35: 100959, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32244186

RESUMO

OBJECTIVE: As diabetes develops, marked reductions of insulin secretion are associated with very modest elevations of glucose. We wondered if these glucose changes disrupt beta cell differentiation enough to account for the altered function. METHODS: Rats were subjected to 90% partial pancreatectomies and those with only mild glucose elevations 4 weeks or 10 weeks after surgery had major alterations of gene expression in their islets as determined by RNAseq. RESULTS: Changes associated with glucose toxicity demonstrated that many of the critical genes responsible for insulin secretion were downregulated while the expression of normally suppressed genes increased. Also, there were marked changes in genes associated with replication, aging, senescence, stress, inflammation, and increased expression of genes controlling both class I and II MHC antigens. CONCLUSIONS: These findings suggest that mild glucose elevations in the early stages of diabetes lead to phenotypic changes that adversely affect beta cell function, growth, and vulnerability.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Diferenciação Celular , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Tipo 2/etiologia , Modelos Animais de Doenças , Regulação para Baixo , Expressão Gênica , Hiperglicemia/etiologia , Insulina/metabolismo , Secreção de Insulina/genética , Transplante das Ilhotas Pancreáticas/efeitos adversos , Transplante das Ilhotas Pancreáticas/métodos , Masculino , Pancreatectomia/efeitos adversos , Pancreatectomia/métodos , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos Lew
6.
Diabetes ; 67(7): 1322-1331, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29625991

RESUMO

Previously, we showed that thyroid hormone (TH) triiodothyronine (T3) enhanced ß-cell functional maturation through induction of Mafa High levels of T3 have been linked to decreased life span in mammals and low levels to lengthened life span, suggesting a relationship between TH and aging. Here, we show that T3 increased p16Ink4a (a ß-cell senescence marker and effector) mRNA in rodent and human ß-cells. The kinetics of Mafa and p16Ink4a induction suggested both genes as targets of TH via TH receptors (THRs) binding to specific response elements. Using specific agonists CO23 and GC1, we showed that p16Ink4a expression was controlled by THRA and Mafa by THRB. Using chromatin immunoprecipitation and a transient transfection yielding biotinylated THRB1 or THRA isoforms to achieve specificity, we determined that THRA isoform bound to p16Ink4a , whereas THRB1 bound to Mafa but not to p16Ink4a On a cellular level, T3 treatment accelerated cell senescence as shown by increased number of ß-cells with acidic ß-galactosidase activity. Our data show that T3 can simultaneously induce both maturation (Mafa) and aging (p16Ink4a ) effectors and that these dichotomous effects are mediated through different THR isoforms. These findings may be important for further improving stem cell differentiation protocols to produce functional ß-cells for replacement therapies in diabetes.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Senescência Celular , Células Secretoras de Insulina/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Animais , Biomarcadores/análise , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Humanos , Células Secretoras de Insulina/fisiologia , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
7.
Stem Cell Reports ; 10(3): 712-724, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29539434

RESUMO

Generating an unlimited source of human insulin-producing cells is a prerequisite to advance ß cell replacement therapy for diabetes. Here, we describe a 3D culture system that supports the expansion of adult human pancreatic tissue and the generation of a cell subpopulation with progenitor characteristics. These cells display high aldehyde dehydrogenase activity (ALDHhi), express pancreatic progenitors markers (PDX1, PTF1A, CPA1, and MYC), and can form new organoids in contrast to ALDHlo cells. Interestingly, gene expression profiling revealed that ALDHhi cells are closer to human fetal pancreatic tissue compared with adult pancreatic tissue. Endocrine lineage markers were detected upon in vitro differentiation. Engrafted organoids differentiated toward insulin-positive (INS+) cells, and circulating human C-peptide was detected upon glucose challenge 1 month after transplantation. Engrafted ALDHhi cells formed INS+ cells. We conclude that adult human pancreatic tissue has potential for expansion into 3D structures harboring progenitor cells with endocrine differentiation potential.


Assuntos
Diferenciação Celular/fisiologia , Organoides/fisiologia , Células-Tronco/patologia , Adulto , Animais , Proliferação de Células/fisiologia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Camundongos , Organoides/metabolismo , Células-Tronco/metabolismo
8.
Stem Cell Reports ; 10(3): 725-738, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29478894

RESUMO

Pancreatic duct epithelial cells have been suggested as a source of progenitors for pancreatic growth and regeneration. However, genetic lineage-tracing experiments with pancreatic duct-specific Cre expression have given conflicting results. Using immunofluorescence and flow cytometry, we show heterogeneous expression of both HNF1ß and SOX9 in adult human and murine ductal epithelium. Their expression was dynamic and diminished significantly after induced replication. Purified pancreatic duct cells formed organoid structures in 3D culture, and heterogeneity of expression of Hnf1ß and Sox9 was maintained even after passaging. Using antibodies against a second cell surface molecule CD51 (human) or CD24 (mouse), we could isolate living subpopulations of duct cells enriched for high or low expression of HNF1ß and SOX9. Only the CD24high (Hnfßhigh/Sox9high) subpopulation was able to form organoids.


Assuntos
Fator 1-beta Nuclear de Hepatócito/metabolismo , Ductos Pancreáticos/metabolismo , Fatores de Transcrição SOX9/metabolismo , Adulto , Idoso , Animais , Antígeno CD24/metabolismo , Células Epiteliais/metabolismo , Humanos , Integrina alfaV/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Organoides/metabolismo
9.
Cell Metab ; 25(4): 898-910.e5, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28380379

RESUMO

We hypothesized that the known heterogeneity of pancreatic ß cells was due to subpopulations of ß cells at different stages of their life cycle with different functional capacities and that further changes occur with metabolic stress and aging. We identified new markers of aging in ß cells, including IGF1R. In ß cells IGF1R expression correlated with age, dysfunction, and expression of known age markers p16ink4a, p53BP1, and senescence-associated ß-galactosidase. The new markers showed striking heterogeneity both within and between islets in both mouse and human pancreas. Acute induction of insulin resistance with an insulin receptor antagonist or chronic ER stress resulted in increased expression of aging markers, providing insight into how metabolic stress might accelerate dysfunction and decline of ß cells. These novel findings about ß cell and islet heterogeneity, and how they change with age, open up an entirely new set of questions about the pathogenesis of type 2 diabetes.


Assuntos
Biomarcadores/metabolismo , Senescência Celular , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Adolescente , Adulto , Idoso , Envelhecimento/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Glucose/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Técnica de Placa Hemolítica , Humanos , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/metabolismo , Estresse Fisiológico , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
10.
Islets ; 9(2): 19-29, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28252345

RESUMO

Isolated islets used for transplantation are known to be stressed, which can result from the circumstances of death, in particular brain death, the preservation of the pancreas with its warm and cold ischemia, from the trauma of the isolation process, and the complex events that occur during tissue culture. The current study focused upon the events that occur before the islet isolation procedure. Pancreases were obtained from brain dead donors (n = 7) with mean age 50 (11) and normal pancreatic tissue obtained at surgery done for pancreatic neoplasms (n = 7), mean age 69 (9). Frozen sections were subjected to laser capture microdissection (LCM) to obtain ß-cell rich islet tissue, from which extracted RNA was analyzed with microarrays. Gene expression of the 2 groups was evaluated with differential expression analysis for genes and pathways. Marked changes were found in pathways concerned with endoplasmic reticulum stress with its unfolded protein response (UPR), apoptotic pathways and components of inflammation. In addition, there were changes in genes important for islet cell identity. These findings advance our understanding of why islets are stressed before transplantation, which may lead to strategies to reduce this stress and lead to better clinical outcomes.


Assuntos
Apoptose/genética , Células Secretoras de Insulina/metabolismo , Pâncreas/metabolismo , Estresse Fisiológico/genética , Resposta a Proteínas não Dobradas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Morte Encefálica , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação/genética , Microdissecção e Captura a Laser , Masculino , Pessoa de Meia-Idade
11.
Stem Cells Transl Med ; 5(11): 1525-1537, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27405779

RESUMO

: ß-Cell replacement therapy represents the most promising approach to restore ß-cell mass and glucose homeostasis in patients with type 1 diabetes. Safety and ethical issues associated with pluripotent stem cells stimulated the search for adult progenitor cells with endocrine differentiation capacities. We have already described a model for expansion and differentiation of human pancreatic duct-derived cells (HDDCs) into insulin-producing cells. Here we show an innovative and robust in vitro system for large-scale production of ß-like cells from HDDCs using a nonintegrative RNA-based reprogramming technique. Synthetic modified RNAs for pancreatic transcription factors (pancreatic duodenal homeobox 1, neurogenin3, and V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A [MAFA]) were manufactured and daily transfected in HDDCs without strongly affecting immune response and cell viability. MAFA overexpression was efficient and sufficient to induce ß-cell differentiation of HDDCs, which acquired a broad repertoire of mature ß-cell markers while downregulating characteristic epithelial-mesenchymal transition markers. Within 7 days, MAFA-reprogrammed HDDC populations contained 37% insulin-positive cells and a proportion of endocrine cells expressing somatostatin and pancreatic polypeptide. Ultrastructure analysis of differentiated HDDCs showed both immature and mature insulin granules with light-backscattering properties. Furthermore, in vitro HDDC-derived ß cells (called ß-HDDCs) secreted human insulin and C-peptide in response to glucose, KCl, 3-isobutyl-1-methylxanthine, and tolbutamide stimulation. Transplantation of ß-HDDCs into diabetic SCID-beige mice confirmed their functional glucose-responsive insulin secretion and their capacity to mitigate hyperglycemia. Our data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new ß cells with potential to reverse diabetes. SIGNIFICANCE: ß-Cell replacement therapy represents the most promising approach to restore glucose homeostasis in patients with type 1 diabetes. This study shows an innovative and robust in vitro system for large-scale production of ß-like cells from human pancreatic duct-derived cells (HDDCs) using a nonintegrative RNA-based reprogramming technique. V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A overexpression was efficient and sufficient to induce ß-cell differentiation and insulin secretion from HDDCs in response to glucose stimulation, allowing the cells to mitigate hyperglycemia in diabetic SCID-beige mice. The data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new ß cells with the potential to reverse diabetes.

12.
PLoS One ; 10(11): e0142286, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26540252

RESUMO

Early in pancreatic development, epithelial cells of pancreatic buds function as primary multipotent progenitor cells (1°MPC) that specify all three pancreatic cell lineages, i.e., endocrine, acinar and duct. Bipotent "Trunk" progenitors derived from 1°MPC are implicated in directly regulating the specification of endocrine progenitors. It is unclear if this specification process is initiated in the 1°MPC where some 1°MPC become competent for later specification of endocrine progenitors. Previously we reported that in Pdx1tTA/+;tetOMafA (bigenic) mice inducing expression of transcription factor MafA in Pdx1-expressing (Pdx1+) cells throughout embryonic development inhibited the proliferation and differentiation of 1°MPC cells, resulting in reduced pancreatic mass and endocrine cells by embryonic day (E) 17.5. Induction of the transgene only until E12.5 in Pdx1+ 1°MPC was sufficient for this inhibition of endocrine cells and pancreatic mass at E17.5. However, by birth (P0), as we now report, such bigenic pups had significantly increased pancreatic and endocrine volumes with endocrine clusters containing all pancreatic endocrine cell types. The increase in endocrine cells resulted from a higher proliferation of tubular epithelial cells expressing the progenitor marker Glut2 in E17.5 bigenic embryos and increased number of Neurog3-expressing cells at E19.5. A BrdU-labeling study demonstrated that inhibiting proliferation of 1°MPC by forced MafA-expression did not lead to retention of those progenitors in E17.5 tubular epithelium. Our data suggest that the forced MafA expression in the 1°MPC inhibits their competency to specify endocrine progenitors only until E17.5, and after that compensatory proliferation of tubular epithelium gives rise to a distinct pool of endocrine progenitors. Thus, these bigenic mice provide a novel way to characterize the competency of 1°MPC for their ability to specify endocrine progenitors, a critical limitation in our understanding of endocrine differentiation.


Assuntos
Epitélio/fisiologia , Pâncreas/fisiologia , Células-Tronco/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células Endócrinas/metabolismo , Células Endócrinas/fisiologia , Sistema Endócrino/metabolismo , Sistema Endócrino/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Transportador de Glucose Tipo 2/metabolismo , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/metabolismo , Gravidez , Células-Tronco/metabolismo
13.
J Clin Endocrinol Metab ; 100(10): 3651-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26207953

RESUMO

CONTEXT: Human embryonic stem cells (hESCs) differentiated toward ß-cells and fetal human pancreatic islet cells resemble each other transcriptionally and are characterized by immaturity with a lack of glucose responsiveness, low levels of insulin content, and impaired proinsulin-to-insulin processing. However, their response to stimuli that promote functionality have not been compared. OBJECTIVE: The objective of the study was to evaluate the effects of our previous strategies for functional maturation developed in rodents in these two human models of ß-cell immaturity and compare their responses. Design, Settings, Participants, and Interventions: In proof-of-principle experiments using either adenoviral-mediated overexpression of V-Maf avian musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA) or the physiologically driven path via thyroid hormone (T3) and human fetal islet-like cluster (ICC) functional maturity was evaluated. Then the effects of T3 were evaluated upon the functional maturation of hESCs differentiated toward ß-cells. MAIN OUTCOME MEASURES: Functional maturation was evaluated by the following parameters: glucose responsiveness, insulin content, expression of the mature ß-cell transcription factor MAFA, and proinsulin-to-insulin processing. RESULTS: ICCs responded positively to MAFA overexpression and T3 treatment as assessed by two different maturation parameters: increased insulin secretion at 16.8 mM glucose and increased proinsulin-to-insulin processing. In hESCs differentiated toward ß-cells, T3 enhanced MAFA expression, increased insulin content (probably mediated by the increased MAFA), and increased insulin secretion at 16.8 mM glucose. CONCLUSION: T3 is a useful in vitro stimulus to promote human ß-cell maturation as shown in both human fetal ICCs and differentiated hESCs. The degree of maturation induced varied in the two models, possibly due to the different developmental status at the beginning of the study.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição Maf Maior/metabolismo , Tri-Iodotironina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Glucose/farmacologia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Fatores de Transcrição Maf Maior/genética
14.
Endocrinology ; 156(6): 2029-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25836667

RESUMO

Reprogramming technology has opened the possibility of converting one cell type into another by forced expression of transgenes. Transduction of adenoviral vectors encoding 3 pancreatic transcription factors, Pdx1, Ngn3, and MafA, into mouse pancreas results in direct reprogramming of exocrine cells to insulin-producing ß-like cells. We hypothesized that cultured adult pancreatic duct cells could be reprogrammed to become insulin-producing ß-cells by adenoviral-mediated expression of this same combination of factors. Exocrine were isolated from adult mouse insulin 1 promoter (MIP)-green fluorescent protein (GFP) transgenic mice to allow new insulin-expressing cells to be detected by GFP fluorescence. Cultured cells were transduced by an adenoviral vector carrying a polycistronic construct Ngn3/Pdx1/MafA/mCherry (Ad-M3C) or mCherry sequence alone as a control vector. In addition, the effects of glucagon-like peptide-1 (GLP-1) receptor agonist, exendin-4 (Ex-4) on the reprogramming process were examined. GFP(+) cells appeared 2 days after Ad-M3C transduction; the reprogramming efficiency was 8.6 ± 2.6% by day 4 after transduction. Ad-M3C also resulted in increased expression of ß-cell markers insulin 1 and 2, with enhancement by Ex-4. Expression of other ß-cell markers, neuroD and GLP-1 receptor, were also significantly up-regulated. The amount of insulin release into the media and insulin content of the cells were significantly higher in the Ad-M3C-transduced cells; this too was enhanced by Ex-4. The transduced cells did not secrete insulin in response to increased glucose, indicating incomplete differentiation to ß-cells. Thus, cultured murine adult pancreatic cells with a duct phenotype can be directly reprogrammed to insulin-producing ß-like cells by adenoviral delivery of 3 pancreatic transcription factors.


Assuntos
Reprogramação Celular/fisiologia , Células Secretoras de Insulina/metabolismo , Ductos Pancreáticos/citologia , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Reprogramação Celular/genética , Masculino , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma
15.
Cell Reprogram ; 16(6): 456-66, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25437872

RESUMO

ß-Cell replacement therapy is a promising field of research that is currently evaluating new sources of cells for clinical use. Pancreatic epithelial cells are potent candidates for ß-cell engineering, but their large-scale expansion has not been evidenced yet. Here we describe the efficient expansion and ß-cell differentiation of purified human pancreatic duct cells (DCs). When cultured in endothelial growth-promoting media, purified CA19-9(+) cells proliferated extensively and achieved up to 22 population doublings over nine passages. While proliferating, human pancreatic duct-derived cells (HDDCs) downregulated most DC markers, but they retained low CK19 and SOX9 gene expression. HDDCs acquired mesenchymal features but differed from fibroblasts or pancreatic stromal cells. Coexpression of duct and mesenchymal markers suggested that HDDCs were derived from DCs via a partial epithelial-to-mesenchymal transition (EMT). This was supported by the blockade of HDDC appearance in CA19-9(+) cell cultures after incubation with the EMT inhibitor A83-01. After a differentiation protocol mimicking pancreatic development, HDDC populations contained about 2% of immature insulin-producing cells and showed glucose-unresponsive insulin secretion. Downregulation of the mesenchymal phenotype improved ß-cell gene expression profile of differentiated HDDCs without affecting insulin protein expression and secretion. We show that pancreatic ducts represent a new source for engineering large amounts of ß-like-cells with potential for treating diabetes.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Células Secretoras de Insulina/citologia , Ductos Pancreáticos/citologia , Adulto , Idoso , Células Cultivadas , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal , Humanos , Insulina/metabolismo , Secreção de Insulina , Pessoa de Meia-Idade
16.
Diabetes ; 63(4): 1303-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24222349

RESUMO

Glucagon-like peptide 1-based therapies, collectively described as incretins, produce glycemic benefits in the treatment of type 2 diabetes. Recent publications raised concern for a potential increased risk of pancreatitis and pancreatic cancer with incretins based in part on findings from a small number of rodents. However, extensive toxicology assessments in a substantial number of animals dosed up to 2 years at high multiples of human exposure do not support these concerns. We hypothesized that the lesions being attributed to incretins are commonly observed background findings and endeavored to characterize the incidence of spontaneous pancreatic lesions in three rat strains (Sprague-Dawley [S-D] rats, Zucker diabetic fatty [ZDF] rats, and rats expressing human islet amyloid polypeptide [HIP]; n = 36/group) on a normal or high-fat diet over 4 months. Pancreatic findings in all groups included focal exocrine degeneration, atrophy, inflammation, ductular cell proliferation, and/or observations in large pancreatic ducts similar to those described in the literature, with an incidence of exocrine atrophy/inflammation seen in S-D (42-72%), HIP (39%), and ZDF (6%) rats. These data indicate that the pancreatic findings attributed to incretins are common background findings, observed without drug treatment and independent of diet or glycemic status, suggesting a need to exercise caution when interpreting the relevance of some recent reports regarding human safety.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Pâncreas/efeitos dos fármacos , Pancreatopatias/etiologia , Animais , Diabetes Mellitus/fisiopatologia , Dieta Hiperlipídica , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Incretinas/efeitos adversos , Pâncreas/patologia , Pancreatite/etiologia , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Aumento de Peso
17.
Cell Transplant ; 23(2): 139-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23321263

RESUMO

There is great interest in the potential of the human endocrine pancreas for regeneration by ß-cell replication or neogenesis. Our aim was to explore this potential in adult human pancreases and in both islet and exocrine tissue transplanted into mice. The design was to examine pancreases obtained from cadaver donors, autopsies, and fresh surgical specimens and compare these findings with those obtained from islet and duct tissue grafted into the kidney. Islets and exocrine tissue were transplanted into normoglycemic ICR-SCID mice and studied 4 and 14 weeks later. ß-Cell replication, as assessed by double staining for insulin and Ki67, was 0.22 ± 0.03% at 4 weeks and 0.13 ± 0.03% at 14 weeks. In contrast, no evidence of ß-cell replication could be found in 11 cadaver donor and 10 autopsy pancreases. However, Ki67 staining of ß-cells in frozen sections obtained at surgery was comparable to that found in transplanted islets. Evidence for neogenesis in transplanted pancreatic exocrine tissue was supported by finding ß-cells within the duct epithelium and the presence of cells double stained for insulin and cytokeratin 19 (CK19). However, ß-cells within the ducts never constituted more than 1% of the CK19-positive cells. With confocal microscopy, 7 of 12 examined cells expressed both markers, consistent with a neogeneic process. Mice with grafts containing islet or exocrine tissue were treated with various combinations of exendin-4, gastrin, and epidermal growth factor; none increased ß-cell replication or stimulated neogenesis. In summary, human ß-cells replicate at a low level in islets transplanted into mice and in surgical pancreatic frozen sections, but rarely in cadaver donor or autopsy pancreases. The absence of ß-cell replication in many adult cadaver or autopsy pancreases could, in part, be an artifact of the postmortem state. Thus, it appears that adult human ß-cells maintain a low level of turnover through replication and neogenesis.


Assuntos
Autopsia , Cadáver , Células Secretoras de Insulina/citologia , Transplante das Ilhotas Pancreáticas , Animais , Fator de Crescimento Epidérmico/metabolismo , Exenatida , Gastrinas/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Camundongos , Peptídeos/metabolismo , Peçonhas/metabolismo
18.
Islets ; 5(5): 233-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24356710

RESUMO

This commentary discusses the concept of ß-cell dedifferentiation in diabetes, which is important but not well defined. A broad interpretation is that a state of differentiation has been lost, which means changes in gene expression as well as in structural and functional elements. Thus, a fully mature healthy ß cell will have its unique differentiation characteristics, but maturing cells and old ß cells will have different patterns of gene expression and might therefore be considered as dedifferentiated. The meaning of dedifferentiation is now being debated because ß cells in the diabetic state lose components of their differentiated state, which results in severe dysfunction of insulin secretion. The major cause of this change is thought to be glucose toxicity (glucotoxicity) and that lowering glucose levels with treatment results in some restoration of function. An issue to be discussed is whether dedifferentiated ß cells return to a multipotent precursor cell phenotype or whether they follow a different pathway of dedifferentiation.


Assuntos
Desdiferenciação Celular/fisiologia , Diabetes Mellitus/fisiopatologia , Glucose/toxicidade , Células Secretoras de Insulina/fisiologia , Insulina/metabolismo , Animais , Desdiferenciação Celular/genética , Diferenciação Celular , Diabetes Mellitus/patologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Humanos , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/patologia , Células-Tronco Multipotentes
19.
Endocrinology ; 154(12): 4493-502, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24029238

RESUMO

There has been great interest in the extent of ß-cell regeneration after pancreatic duct ligation (PDL) and whether α- to ß-cell conversion might account for ß-cell regeneration after near-complete ß-cell loss. To assess these questions, we established a PDL-model in adult male rats after almost complete beta-cell depletion achieved by giving a single high dose of streptozocin (STZ) in the fasted state. Because of the resultant severe diabetes, rats were given islet cell transplants to allow long-term follow-up. Although animals were followed up to 10 months, there was no meaningful ß-cell regeneration, be it through replication, neogenesis, or α- to ß-cell conversion. In contrast, the acinar cell compartment underwent massive changes with first severe acinar degeneration upon PDL injury followed by the appearance of pancreatic adipocytes, and finally near-complete reappearance of acini. We conclude that ß-cells and acinar cells, although originating from the same precursors during development, have very distinct regenerative potentials in our PDL model in adult rats.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Ductos Pancreáticos/cirurgia , Regeneração/fisiologia , Animais , Glucagon/metabolismo , Insulina/metabolismo , Antígeno Ki-67/metabolismo , Ligadura , Masculino , Polipeptídeo Pancreático/metabolismo , Ratos , Ratos Endogâmicos Lew
20.
PLoS One ; 8(8): e72132, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991053

RESUMO

AIM/HYPOTHESIS: The adult mammalian pancreas has limited ability to regenerate in order to restore adequate insulin production from multipotent progenitors, the identity and function of which remain poorly understood. Here we test whether the TNF family member TWEAK (TNF-like weak inducer of apoptosis) promotes ß-cell neogenesis from proliferating pancreatic ductal epithelium in adult mice. METHODS: C57Bl/6J mice were treated with Fc-TWEAK and pancreas harvested at different time points for analysis by histology and immunohistochemistry. For lineage tracing, 4 week old double transgenic mice CAII-CreER(TM): R26R-eYFP were implanted with tamoxifen pellet, injected with Fc-TWEAK or control Ig twice weekly and analyzed at day 18 for TWEAK-induced duct cell progeny by costaining for insulin and YFP. The effect of TWEAK on pancreatic regeneration was determined by pancytokeratin immunostaining of paraffin embedded sections from wildtype and TWEAK receptor (Fn14) deficient mice after Px. RESULTS: TWEAK stimulates proliferation of ductal epithelial cells through its receptor Fn14, while it has no mitogenic effect on pancreatic α- or ß-cells or acinar cells. Importantly, TWEAK induces transient expression of endogenous Ngn3, a master regulator of endocrine cell development, and induces focal ductal structures with characteristics of regeneration foci. In addition, we identify by lineage tracing TWEAK-induced pancreatic ß-cells derived from pancreatic duct epithelial cells. Conversely, we show that Fn14 deficiency delays formation of regenerating foci after Px and limits their expansion. CONCLUSIONS/INTERPRETATION: We conclude that TWEAK is a novel factor mediating pancreatic ß-cell neogenesis from ductal epithelium in normal adult mice.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ductos Pancreáticos/efeitos dos fármacos , Fatores de Necrose Tumoral/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Citocina TWEAK , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Imuno-Histoquímica , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Queratinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/metabolismo , Pâncreas/fisiologia , Pâncreas/cirurgia , Pancreatectomia , Ductos Pancreáticos/citologia , Ductos Pancreáticos/metabolismo , Receptores do Fator de Necrose Tumoral/deficiência , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Regeneração/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor de TWEAK , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA