Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transpl Int ; 36: 11046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762268

RESUMO

Endomyocardial biopsies are the gold standard for surveillance of graft rejection following heart transplantation, and are assessed by classical histopathology using a limited number of previously stained slices from several biopsies. Synchrotron propagation-based X-ray phase contrast imaging is a non-destructive method to image biological samples without tissue preparation, enabling virtual 2D and 3D histopathology. We aimed to show the feasibility of this method to assess acute cellular rejection and its agreement to classical histopathology. Right ventricular biopsies were sampled from 23 heart transplantation recipients (20 males, mean age 54±14 years) as part of standard follow-up. The clinical diagnosis of potential rejection was made using classical histopathology. One additional study sample was harvested and imaged by X-ray phase contrast imaging, producing 3D datasets with 0.65 µm pixel size, and up to 4,320 images per sample. An experienced pathologist graded both histopathological and X-ray phase contrast images in a blinded fashion. The agreement between methods was assessed by weighted kappa, showing substantial agreement (kappa up to 0.80, p < 0.01) between X-ray phase contrast imaging and classical histopathology. X-ray phase contrast imaging does not require tissue processing, allows thorough analysis of a full myocardial sample and allows identification of acute cellular rejection.


Assuntos
Transplante de Coração , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Seguimentos , Raios X , Biópsia , Rejeição de Enxerto/diagnóstico por imagem , Rejeição de Enxerto/patologia , Imageamento Tridimensional
2.
PLoS One ; 17(4): e0265598, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35471989

RESUMO

Histology is a long standing and well-established gold standard for pathological characterizations. In recent years however, synchrotron radiation-based micro-computed tomography (SRµCT) has become a tool for extending the imaging of two-dimensional thin sections into three-dimensional imaging of tissue blocks, enabling so-called virtual histology with arbitrary clipping planes, volumetric rendering and automatic segmentation. In this study, we present a thorough characterization of human carotid plaques after endarterectomy of patients with stroke or transient ischemic attack (TIA), investigating several different pathologic structures using both SRµCT and histology. Phase-contrast SRµCT was performed with two different magnifications (voxel sizes 6.5 µm and 0.65 µm, respectively), and histology was performed with multiple different stainings (Alpha-actin, Glycophorin A, von Kossa, Movat, CD68). The 0.65 µm high-resolution SRµCT was performed on selected areas with plaque typical relevant morphology, identified on the 6.5 µm low-resolution SRµCT. The tomography datasets were reconstructed with additional 3D volume rendering and compared to histology. In total, nine different regions with typical pathologic structures were identified and imaged with high-resolution SRµCT. The results show many characteristics typical for advanced atherosclerotic plaques, clinically relevant, namely ruptures with thrombosis, neo-vascularization, inflammatory infiltrates in shoulder regions, lipid rich necrotic cores (LRNC), thin fibrous cap, calcifications, lumen irregularities, and changes in vessel wall structures such as the internal elastic membrane. This method's non-destructive nature renders details of micro-structures with an excellent visual likeness to histology, with the additional strength of multiplanar and 3D visualization and the possibility of multiple re-scans.


Assuntos
Ataque Isquêmico Transitório , Placa Aterosclerótica , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/patologia , Humanos , Ataque Isquêmico Transitório/patologia , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Síncrotrons , Microtomografia por Raio-X/métodos
3.
Hear Res ; 383: 107806, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31606582

RESUMO

PURPOSE: Synchrotron-based X-ray Phase Contrast Imaging (SR X-PCI) allows, thanks to a highly coherent and powerful X-ray beam, the imaging of surface and cross-sectional tissue properties with high absorption-contrast. The objective of this study is to investigate the sub-micron structure of the ossicular chain. The understanding of its morphological properties at sub-micron scale will help to refine the understanding of its structural properties. The investigation of intact, non-decalcified and unstained ossicular bones allows to study the spatial relationship between surface properties, internal structure and tomographical slides. MAIN RESULTS: The tomography datasets with a pixel size of 0.65 µm were reconstructed and 3D volume rendering models of all specimens were analyzed. Based on surface models, the surfaces of the articulations, the insertion of the tensor tympani and stapedial muscle tendons and the nutritional foramina, where the vessels penetrate the ossicles, were visualized. Moreover, a branched network of inner channels could be represented and its connection to the nutritional foramen was demonstrated. Looking at the tomographic structure of the three ossicles a mineralization pattern for every auditory bone was described, indicating a considerable variation throughout the bones. CONCLUSIONS: This study investigates the submicron-structure of the auditory ossicles at a pixel size of 0.65 µm, which is to the best of our knowledge the highest resolution reported in the investigation of the human auditory system so far. The provided data helps in the further understanding of the anatomical conformation of the ossicular chain.


Assuntos
Ossículos da Orelha/diagnóstico por imagem , Imageamento Tridimensional , Síncrotrons , Microtomografia por Raio-X , Humanos , Interpretação de Imagem Radiográfica Assistida por Computador
4.
Circ Cardiovasc Imaging ; 11(10): e007753, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354476

RESUMO

BACKGROUND: In the era of increasingly successful corrective interventions in patients with congenital heart disease (CHD), global and regional myocardial remodeling are emerging as important sources of long-term morbidity/mortality. Changes in organization of the myocardium in CHD, and in its mechanical properties, conduction, and blood supply, result in altered myocardial function both before and after surgery. To gain a better understanding and develop appropriate and individualized treatment strategies, the microscopic organization of cardiomyocytes, and their integration at a macroscopic level, needs to be completely understood. The aim of this study is to describe, for the first time, in 3 dimensions and nondestructively the detailed remodeling of cardiac microstructure present in a human fetal heart with complex CHD. METHODS AND RESULTS: Synchrotron X-ray phase-contrast imaging was used to image an archival midgestation formalin-fixed fetal heart with right isomerism and complex CHD and compare with a control fetal heart. Analysis of myocyte aggregates, at detail not accessible with other techniques, was performed. Macroanatomic and conduction system changes specific to the disease were clearly observable, together with disordered myocyte organization in the morphologically right ventricle myocardium. Electrical activation simulations suggested altered synchronicity of the morphologically right ventricle. CONCLUSIONS: We have shown the potential of X-ray phase-contrast imaging for studying cardiac microstructure in the developing human fetal heart at high resolution providing novel insight while preserving valuable archival material for future study. This is the first study to show myocardial alterations occur in complex CHD as early as midgestation.


Assuntos
Coração Fetal/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico , Miócitos Cardíacos/patologia , Diagnóstico Pré-Natal/métodos , Feminino , Coração Fetal/fisiopatologia , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/fisiopatologia , Humanos , Imagem Cinética por Ressonância Magnética , Gravidez , Segundo Trimestre da Gravidez , Tomografia Computadorizada por Raios X
5.
Eur Heart J Cardiovasc Imaging ; 18(7): 732-741, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28329054

RESUMO

BACKGROUND: While individual cardiac myocytes only have a limited ability to shorten, the heart efficiently pumps a large volume-fraction thanks to a cell organization in a complex 3D fibre structure. Subclinical subtle cardiac structural remodelling is often present before symptoms arise. Understanding and early detection of these subtle changes is crucial for diagnosis and prevention. Additionally, personalized computational modelling requires knowledge on the multi-scale structure of the whole heart and vessels. METHODS AND RESULTS: We developed a rapid acquisition together with visualization and quantification methods of the integrated microstructure of whole in-vitro rodents hearts using synchrotron based X-ray phase-contrast tomography. These images are formed not only by X-ray absorption by the tissue but also by wave propagation phenomena, enhancing structural information, thus allowing to raise tissue contrast to an unprecedented level. We used a (ex-vivo) normal rat heart and fetal rabbit hearts suffering intrauterine growth restriction as a model of subclinical cardiac remodelling to illustrate the strengths and potential of the technique. For comparison, histology and diffusion tensor magnetic resonance imaging was performed. CONCLUSIONS: We have developed a novel, high resolution, image acquisition, and quantification approach to study a whole in-vitro heart at myofibre resolution, providing integrated 3D structural information at microscopic level without any need of tissue slicing and processing. This superior imaging approach opens up new possibilities for a systems approach towards analysing cardiac structure and function, providing rapid acquisition of quantitative microstructure of the heart in a near native state.


Assuntos
Sistema Cardiovascular/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Miócitos Cardíacos/ultraestrutura , Síncrotrons , Microtomografia por Raio-X/métodos , Animais , Simulação por Computador , Imageamento Tridimensional , Modelos Animais , Coelhos , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA