Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
mBio ; 15(6): e0060924, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38742824

RESUMO

Mycobacterium abscessus (Mab) affects patients with immunosuppression or underlying structural lung diseases such as cystic fibrosis (CF). Additionally, Mab poses clinical challenges due to its resistance to multiple antibiotics. Herein, we investigated the synergistic effect of dual ß-lactams [sulopenem and cefuroxime (CXM)] or the combination of sulopenem and CXM with ß-lactamase inhibitors [BLIs-avibactam (AVI) or durlobactam (DUR)]. The sulopenem-CXM combination yielded low minimum inhibitory concentration (MIC) values for 54 clinical Mab isolates and ATCC19977 (MIC50 and MIC90 ≤0.25 µg/mL). Similar synergistic effects were observed in time-kill studies conducted at concentrations achievable in clinical settings. Sulopenem-CXM outperformed monotherapy, yielding ~1.5 Log10 CFU/mL reduction during 10 days. Addition of BLIs enhanced this antibacterial effect, resulting in an additional reduction of CFUs (~3 Log10 for sulopenem-CXM and AVI and ~4 Log10 for sulopenem-DUR). Exploration of the potential mechanisms of the synergy focused on their interactions with L,D-transpeptidases (Ldts; LdtMab1-LdtMab4), penicillin-binding-protein B (PBP B), and D,D-carboxypeptidase (DDC). Acyl complexes, identified via mass spectrometry analysis, demonstrated the binding of sulopenem with LdtMab2-LdtMab4, DDC, and PBP B and CXM with LdtMab2 and PBP B. Molecular docking and mass spectrometry data suggest the formation of a covalent adduct between sulopenem and LdtMab2 after the nucleophilic attack of the cysteine residue at the ß-lactam carbonyl carbon, leading to the cleavage of the ß-lactam ring and the establishment of a thioester bond linking the LdtMab2 with sulopenem. In conclusion, we demonstrated the biochemical basis of the synergy of sulopenem-CXM with or without BLIs. These findings potentially broaden the selection of oral therapeutic agents to combat Mab. IMPORTANCE: Treating infections from Mycobacterium abscessus (Mab), particularly those resistant to common antibiotics like macrolides, is notoriously difficult, akin to a never-ending struggle for healthcare providers. The rate of treatment failure is even higher than that seen with multidrug-resistant tuberculosis. The role of combination ß-lactams in inhibiting L,D-transpeptidation, the major peptidoglycan crosslink reaction in Mab, is an area of intense investigation, and clinicians have utilized this approach in the treatment of macrolide-resistant Mab, with reports showing clinical success. In our study, we found that cefuroxime and sulopenem, when used together, display a significant synergistic effect. If this promising result seen in lab settings, translates well into real-world clinical effectiveness, it could revolutionize current treatment methods. This combination could either replace the need for more complex intravenous medications or serve as a "step down" to an oral medication regimen. Such a shift would be much easier for patients to manage, enhancing their comfort and likelihood of sticking to the treatment plan, which could lead to better outcomes in tackling these tough infections. Our research delved into how these drugs inhibit cell wall synthesis, examined time-kill data and binding studies, and provided a scientific basis for the observed synergy in cell-based assays.


Assuntos
Antibacterianos , Cefuroxima , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Mycobacterium abscessus , Mycobacterium abscessus/efeitos dos fármacos , Antibacterianos/farmacologia , Humanos , Cefuroxima/farmacologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Inibidores de beta-Lactamases/farmacologia , Simulação de Acoplamento Molecular , Proibitinas
3.
Clin Infect Dis ; 77(Suppl 4): S305-S313, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843118

RESUMO

Addressing the treatment and prevention of antibacterial-resistant gram-negative bacterial infections is a priority area of the Antibacterial Resistance Leadership Group (ARLG). The ARLG has conducted a series of observational studies to define the clinical and molecular global epidemiology of carbapenem-resistant and ceftriaxone-resistant Enterobacterales, carbapenem-resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii, with the goal of optimizing the design and execution of interventional studies. One ongoing ARLG study aims to better understand the impact of fluoroquinolone-resistant gram-negative gut bacteria in neutropenic patients, which threatens to undermine the effectiveness of fluoroquinolone prophylaxis in these vulnerable patients. The ARLG has conducted pharmacokinetic studies to inform the optimal dosing of antibiotics that are important in the treatment of drug-resistant gram-negative bacteria, including oral fosfomycin, intravenous minocycline, and a combination of intravenous ceftazidime-avibactam and aztreonam. In addition, randomized clinical trials have assessed the safety and efficacy of step-down oral fosfomycin for complicated urinary tract infections and single-dose intravenous phage therapy for adult patients with cystic fibrosis who are chronically colonized with P. aeruginosa in their respiratory tract. Thus, the focus of investigation in the ARLG has evolved from improving understanding of drug-resistant gram-negative bacterial infections to positively affecting clinical care for affected patients through a combination of interventional pharmacokinetic and clinical studies, a focus that will be maintained moving forward.


Assuntos
Fosfomicina , Infecções por Bactérias Gram-Negativas , Adulto , Humanos , Fosfomicina/uso terapêutico , Liderança , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Bactérias Gram-Negativas , Carbapenêmicos/uso terapêutico , Fluoroquinolonas/uso terapêutico , Pseudomonas aeruginosa , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
4.
Pharmacotherapy ; 43(8): 736-739, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37615244

RESUMO

Intravenous ß-lactam antibiotics remain a cornerstone in the management of bacterial infections due to their broad spectrum of activity and excellent tolerability. ß-lactams are well established to display time-dependent bactericidal activity, where reductions in bacterial burden are directly associated with the time that free drug concentrations remain above the minimum inhibitory concentration (MIC) of the pathogen during the dosing interval. In an effort to take advantage of these bactericidal characteristics, prolonged (extended and continuous) infusions (PI) can be applied during the administration of intravenous ß-lactams to increase time above the MIC. PI dosing regimens have been implemented worldwide, but implementation is inconsistent. We report consensus therapeutic recommendations for the use of ß-lactam PI developed by an expert international panel with representation from clinical pharmacy and medicine. This consensus guideline provides recommendations regarding pharmacokinetic and pharmacodynamic targets, therapeutic drug monitoring considerations, and the use of PI ß-lactam therapy in the following patient populations: severely ill and nonseverely ill adult patients, pediatric patients, and obese patients. These recommendations provide the first consensus guidance for the use of ß-lactam therapy administered as PIs and have been reviewed and endorsed by the American College of Clinical Pharmacy (ACCP), the British Society for Antimicrobial Chemotherapy (BSAC), the Cystic Fibrosis Foundation (CFF), the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), the Infectious Diseases Society of America (IDSA), the Society of Critical Care Medicine (SCCM), and the Society of Infectious Diseases Pharmacists (SIDP).


Assuntos
Anti-Infecciosos , Doenças Transmissíveis , Fibrose Cística , Farmácia , Adulto , Humanos , Criança , Farmacêuticos , Fibrose Cística/tratamento farmacológico , Monobactamas , Doenças Transmissíveis/tratamento farmacológico , Antibacterianos/efeitos adversos
5.
Pharmacotherapy ; 43(8): 740-777, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37615245

RESUMO

Intravenous ß-lactam antibiotics remain a cornerstone in the management of bacterial infections due to their broad spectrum of activity and excellent tolerability. ß-lactams are well established to display time-dependent bactericidal activity, where reductions in bacterial burden are directly associated with the time that free drug concentrations remain above the minimum inhibitory concentration (MIC) of the pathogen during the dosing interval. In an effort to take advantage of these bactericidal characteristics, prolonged (extended and continuous) infusions (PIs) can be applied during the administration of intravenous ß-lactams to increase time above the MIC. PI dosing regimens have been implemented worldwide, but implementation is inconsistent. We report consensus therapeutic recommendations for the use of PI ß-lactams developed by an expert international panel with representation from clinical pharmacy and medicine. This consensus guideline provides recommendations regarding pharmacokinetic and pharmacodynamic targets, therapeutic drug-monitoring considerations, and the use of PI ß-lactam therapy in the following patient populations: severely ill and nonseverely ill adult patients, pediatric patients, and obese patients. These recommendations provide the first consensus guidance for the use of ß-lactam therapy administered as PIs and have been reviewed and endorsed by the American College of Clinical Pharmacy (ACCP), the British Society for Antimicrobial Chemotherapy (BSAC), the Cystic Fibrosis Foundation (CFF), the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), the Infectious Diseases Society of America (IDSA), the Society of Critical Care Medicine (SCCM), and the Society of Infectious Diseases Pharmacists (SIDP).


Assuntos
Anti-Infecciosos , Doenças Transmissíveis , Fibrose Cística , Farmácia , Adulto , Humanos , Criança , Farmacêuticos , Fibrose Cística/tratamento farmacológico , Monobactamas , Doenças Transmissíveis/tratamento farmacológico , Antibacterianos/efeitos adversos
6.
Biomedicines ; 11(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36831178

RESUMO

The mortality rates of patients infected with Acinetobacter baumannii who were treated with cefiderocol (CFDC) were not as favorable as those receiving the best available treatment for pulmonary and bloodstream infections. Previous studies showed that the presence of human serum albumin (HSA) or HSA-containing fluids, such as human serum (HS) or human pleural fluid (HPF), in the growth medium is correlated with a decrease in the expression of genes associated with high-affinity siderophore-mediated iron uptake systems. These observations may explain the complexities of the observed clinical performance of CFDC in pulmonary and bloodstream infections, because ferric siderophore transporters enhance the penetration of CFDC into the bacterial cell. The removal of HSA from HS or HPF resulted in a reduction in the minimal inhibitory concentration (MIC) of CFDC. Concomitant with these results, an enhancement in the expression of TonB-dependent transporters known to play a crucial role in transporting iron was observed. In addition to inducing modifications in iron-uptake gene expression, the removal of HSA also decreased the expression of ß-lactamases genes. Taken together, these observations suggest that environmental HSA has a role in the expression levels of select A. baumannii genes. Furthermore, the removal of iron from HSA had the same effect as the removal of HSA upon the expression of genes associated with iron uptake systems, also suggesting that at least one of the mechanisms by which HSA regulates the expression of certain genes is through acting as an iron source.

7.
mBio ; 13(5): e0166322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36073814

RESUMO

Traditional studies on the evolution of antibiotic resistance development use approaches that can range from laboratory-based experimental studies, to epidemiological surveillance, to sequencing of clinical isolates. However, evolutionary trajectories also depend on the environment in which selection takes place, compelling the need to more deeply investigate the impact of environmental complexities and their dynamics over time. Herein, we explored the within-patient adaptive long-term evolution of a Pseudomonas aeruginosa hypermutator lineage in the airways of a cystic fibrosis (CF) patient by performing a chronological tracking of mutations that occurred in different subpopulations; our results demonstrated parallel evolution events in the chromosomally encoded class C ß-lactamase (blaPDC). These multiple mutations within blaPDC shaped diverse coexisting alleles, whose frequency dynamics responded to the changing antibiotic selective pressures for more than 26 years of chronic infection. Importantly, the combination of the cumulative mutations in blaPDC provided structural and functional protein changes that resulted in a continuous enhancement of its catalytic efficiency and high level of cephalosporin resistance. This evolution was linked to the persistent treatment with ceftazidime, which we demonstrated selected for variants with robust catalytic activity against this expanded-spectrum cephalosporin. A "gain of function" of collateral resistance toward ceftolozane, a more recently introduced cephalosporin that was not prescribed to this patient, was also observed, and the biochemical basis of this cross-resistance phenomenon was elucidated. This work unveils the evolutionary trajectories paved by bacteria toward a multidrug-resistant phenotype, driven by decades of antibiotic treatment in the natural CF environmental setting. IMPORTANCE Antibiotics are becoming increasingly ineffective to treat bacterial infections. It has been consequently predicted that infectious diseases will become the biggest challenge to human health in the near future. Pseudomonas aeruginosa is considered a paradigm in antimicrobial resistance as it exploits intrinsic and acquired resistance mechanisms to resist virtually all antibiotics known. AmpC ß-lactamase is the main mechanism driving resistance in this notorious pathogen to ß-lactams, one of the most widely used classes of antibiotics for cystic fibrosis infections. Here, we focus on the ß-lactamase gene as a model resistance determinant and unveil the trajectory P. aeruginosa undertakes on the path toward a multidrug-resistant phenotype during the course of two and a half decades of chronic infection in the airways of a cystic fibrosis patient. Integrating genetic and biochemical studies in the natural environment where evolution occurs, we provide a unique perspective on this challenging landscape, addressing fundamental molecular mechanisms of resistance.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Cefalosporinase/genética , Fibrose Cística/microbiologia , Ceftazidima/farmacologia , Infecções por Pseudomonas/microbiologia , Pseudomonas/metabolismo , Testes de Sensibilidade Microbiana , beta-Lactamases/metabolismo , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
8.
Am J Respir Crit Care Med ; 206(10): 1220-1229, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35771531

RESUMO

Rationale: A common MUC5B gene polymorphism, rs35705950-T, is associated with idiopathic pulmonary fibrosis (IPF), but its role in severe acute respiratory syndrome coronavirus 2 infection and disease severity is unclear. Objectives: To assess whether rs35705950-T confers differential risk for clinical outcomes associated with coronavirus disease (COVID-19) infection among participants in the Million Veteran Program (MVP). Methods: The MUC5B rs35705950-T allele was directly genotyped among MVP participants; clinical events and comorbidities were extracted from the electronic health records. Associations between the incidence or severity of COVID-19 and rs35705950-T were analyzed within each ancestry group in the MVP followed by transancestry meta-analysis. Replication and joint meta-analysis were conducted using summary statistics from the COVID-19 Host Genetics Initiative (HGI). Sensitivity analyses with adjustment for additional covariates (body mass index, Charlson comorbidity index, smoking, asbestosis, rheumatoid arthritis with interstitial lung disease, and IPF) and associations with post-COVID-19 pneumonia were performed in MVP subjects. Measurements and Main Results: The rs35705950-T allele was associated with fewer COVID-19 hospitalizations in transancestry meta-analyses within the MVP (Ncases = 4,325; Ncontrols = 507,640; OR = 0.89 [0.82-0.97]; P = 6.86 × 10-3) and joint meta-analyses with the HGI (Ncases = 13,320; Ncontrols = 1,508,841; OR, 0.90 [0.86-0.95]; P = 8.99 × 10-5). The rs35705950-T allele was not associated with reduced COVID-19 positivity in transancestry meta-analysis within the MVP (Ncases = 19,168/Ncontrols = 492,854; OR, 0.98 [0.95-1.01]; P = 0.06) but was nominally significant (P < 0.05) in the joint meta-analysis with the HGI (Ncases = 44,820; Ncontrols = 1,775,827; OR, 0.97 [0.95-1.00]; P = 0.03). Associations were not observed with severe outcomes or mortality. Among individuals of European ancestry in the MVP, rs35705950-T was associated with fewer post-COVID-19 pneumonia events (OR, 0.82 [0.72-0.93]; P = 0.001). Conclusions: The MUC5B variant rs35705950-T may confer protection in COVID-19 hospitalizations.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Humanos , COVID-19/epidemiologia , COVID-19/genética , Mucina-5B/genética , Polimorfismo Genético , Fibrose Pulmonar Idiopática/genética , Genótipo , Hospitalização , Predisposição Genética para Doença/genética
9.
PLoS One ; 17(3): e0265129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358221

RESUMO

BACKGROUND: Pseudomonas aeruginosa is a persistent and difficult-to-treat pathogen in many patients, especially those with Cystic Fibrosis (CF). Herein, we describe a longitudinal analysis of a series of multidrug resistant (MDR) P. aeruginosa isolates recovered in a 17-month period, from a young female CF patient who underwent double lung transplantation. Our goal was to understand the genetic basis of the observed resistance phenotypes, establish the genomic population diversity, and define the nature of sequence evolution over time. METHODS: Twenty-two sequential P. aeruginosa isolates were obtained within a 17-month period, before and after a double-lung transplant. At the end of the study period, antimicrobial susceptibility testing, whole genome sequencing (WGS), phylogenetic analyses and RNAseq were performed in order to understand the genetic basis of the observed resistance phenotypes, establish the genomic population diversity, and define the nature of sequence changes over time. RESULTS: The majority of isolates were resistant to almost all tested antibiotics. A phylogenetic reconstruction revealed 3 major clades representing a genotypically and phenotypically heterogeneous population. The pattern of mutation accumulation and variation of gene expression suggested that a group of closely related strains was present in the patient prior to transplantation and continued to change throughout the course of treatment. A trend toward accumulation of mutations over time was observed. Different mutations in the DNA mismatch repair gene mutL consistent with a hypermutator phenotype were observed in two clades. RNAseq performed on 12 representative isolates revealed substantial differences in the expression of genes associated with antibiotic resistance and virulence traits. CONCLUSIONS: The overwhelming current practice in the clinical laboratories setting relies on obtaining a pure culture and reporting the antibiogram from a few isolated colonies to inform therapy decisions. Our analyses revealed significant underlying genomic heterogeneity and unpredictable evolutionary patterns that were independent of prior antibiotic treatment, highlighting the need for comprehensive sampling and population-level analysis when gathering microbiological data in the context of CF P. aeruginosa chronic infection. Our findings challenge the applicability of antimicrobial stewardship programs based on single-isolate resistance profiles for the selection of antibiotic regimens in chronic infections such as CF.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Resistência a Múltiplos Medicamentos , Feminino , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa
10.
Biomedicines ; 10(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35327400

RESUMO

Cefiderocol, a recently introduced antibiotic, has a chemical structure that includes a cephalosporin that targets cell wall synthesis and a chlorocatechol siderophore moiety that facilitates cell penetration by active iron transporters. Analysis of the effect that human serum, human serum albumin, and human pleural fluid had on growing Acinetobacter baumannii showed that genes related to iron uptake were down-regulated. At the same time, ß-lactamase genes were expressed at higher levels. The minimum inhibitory concentrations of this antimicrobial in A. baumannii cells growing in the presence of human serum, human serum albumin, or human pleural fluid were higher than those measured when these fluids were absent from the culture medium. These results correlate with increased expression levels of ß-lactamase genes and the down-regulation of iron uptake-related genes in cultures containing human serum, human serum albumin, or human pleural fluid. These modifications in gene expression could explain the less-than-ideal clinical response observed in patients with pulmonary or bloodstream A. baumannii infections. The exposure of the infecting cells to the host's fluids could cause reduced cefiderocol transport capabilities and increased resistance to ß-lactams. The regulation of genes that could impact the A. baumannii susceptibility to cefiderocol, or other antibacterials, is an understudied phenomenon that merits further investigation.

11.
mBio ; 13(1): e0352921, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073757

RESUMO

Mycobacterium abscessus (Mab) infections are a growing menace to the health of many patients, especially those suffering from structural lung disease and cystic fibrosis. With multidrug resistance a common feature and a growing understanding of peptidoglycan synthesis in Mab, it is advantageous to identify potent ß-lactam and ß-lactamase inhibitor combinations that can effectively disrupt cell wall synthesis. To improve existing therapeutic regimens to address serious Mab infections, we evaluated the ability of durlobactam (DUR), a novel diazobicyclooctane ß-lactamase inhibitor to restore in vitro susceptibilities in combination with ß-lactams and provide a biochemical rationale for the activity of this compound. In cell-based assays, susceptibility of Mab subsp. abscessus isolates to amoxicillin (AMOX), imipenem (IMI), and cefuroxime (CXM) was significantly enhanced with the addition of DUR. The triple drug combinations of CXM-DUR-AMOX and IMI-DUR-AMOX were most potent, with MIC ranges of ≤0.06 to 1 µg/mL and an MIC50/MIC90 of ≤0.06/0.25 µg/mL, respectively. We propose a model by which this enhancement may occur, DUR potently inhibited the ß-lactamase BlaMab with a relative Michaelis constant (Ki app) of 4 × 10-3 ± 0.8 × 10-3 µM and acylation rate (k2/K) of 1 × 107 M-1 s-1. Timed mass spectrometry captured stable formation of carbamoyl-enzyme complexes between DUR and LdtMab2-4 and Mab d,d-carboxypeptidase, potentially contributing to the intrinsic activity of DUR. Molecular modeling showed unique and favorable interactions of DUR as a BlaMab inhibitor. Similarly, modeling showed how DUR might form stable Michaelis-Menten complexes with LdtMab2-4 and Mab d,d-carboxypeptidase. The ability of DUR combined with amoxicillin or cefuroxime and imipenem to inactivate multiple targets such as d,d-carboxypeptidase and LdtMab2,4 supports new therapeutic approaches using ß-lactams in eradicating Mab. IMPORTANCE Durlobactam (DUR) is a potent inhibitor of BlaMab and provides protection of amoxicillin and imipenem against hydrolysis. DUR has intrinsic activity and forms stable acyl-enzyme complexes with LdtMab2 and LdtMab4. The ability of DUR to protect amoxicillin and imipenem against BlaMab and its intrinsic activity along with the dual ß-lactam target redundancy can explain the rationale behind the potent activity of this combination.


Assuntos
Mycobacterium abscessus , beta-Lactamas , Humanos , beta-Lactamas/farmacologia , Inibidores de beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Cefuroxima/farmacologia , Testes de Sensibilidade Microbiana , Imipenem/farmacologia , Amoxicilina/farmacologia , Amoxicilina/uso terapêutico , beta-Lactamases
12.
Infect Immun ; 89(10): e0016221, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34310884

RESUMO

Extremely drug-resistant (XDR) Acinetobacter baumannii is a notorious and frequently encountered pathogen demanding novel therapeutic interventions. An initial monoclonal antibody (MAb), C8, raised against A. baumannii capsule, proved a highly effective treatment against a minority of clinical isolates. To overcome this limitation, we broadened coverage by developing a second antibody for use in a combination regimen. We sought to develop an additional anti-A. baumannii MAb through hybridoma technology by immunizing mice with sublethal inocula of virulent, XDR clinical isolates not bound by MAb C8. We identified a new antibacterial MAb, 65, which bound to strains in a pattern distinct from and complementary to that of MAb C8. MAb 65 enhanced macrophage opsonophagocytosis of targeted strains and markedly improved survival in lethal bacteremic sepsis and aspiration pneumonia murine models of A. baumannii infection. MAb 65 was also synergistic with colistin, substantially enhancing protection compared to monotherapy. Treatment with MAb 65 significantly reduced blood bacterial density, ameliorated cytokine production (interleukin-1ß [IL-1ß], IL-6, IL-10, and tumor necrosis factor), and sepsis biomarkers. We describe a novel MAb targeting A. baumannii that broadens immunotherapeutic strain coverage, is highly potent and effective, and synergistically improves outcomes in combination with antibiotics.


Assuntos
Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/imunologia , Anticorpos Monoclonais/imunologia , Infecções por Acinetobacter/sangue , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos/imunologia , Anticorpos Antibacterianos/imunologia , Biomarcadores/sangue , Colistina/imunologia , Citocinas/sangue , Citocinas/imunologia , Farmacorresistência Bacteriana Múltipla/imunologia , Camundongos , Testes de Sensibilidade Microbiana/métodos , Sepse/sangue , Sepse/imunologia , Sepse/microbiologia
13.
J Infect Dis ; 224(12): 2133-2147, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34036366

RESUMO

Monoclonal antibodies (mAbs) are gaining significant momentum as novel therapeutics for infections caused by antibiotic-resistant bacteria. We evaluated the mechanism by which antibacterial mAb therapy protects against Acinetobacter baumannii infections. Anticapsular mAb enhanced macrophage opsonophagocytosis and rescued mice from lethal infections by harnessing complement, macrophages, and neutrophils; however, the degree of bacterial burden did not correlate with survival. Furthermore, mAb therapy reduced proinflammatory (interleukin-1ß [IL-1ß], IL-6, tumor necrosis factor-α [TNF-α]) and anti-inflammatory (IL-10) cytokines, which correlated inversely with survival. Although disrupting IL-10 abrogated the survival advantage conferred by the mAb, IL-10-knockout mice treated with mAb could still survive if TNF-α production was suppressed directly (via anti-TNF-α neutralizing antibody) or indirectly (via macrophage depletion). Thus, even for a mAb that enhances microbial clearance via opsonophagocytosis, clinical efficacy required modulation of pro- and anti-inflammatory cytokines. These findings may inform future mAb development targeting bacteria that trigger the sepsis cascade.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Imunomodulação , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos , Citocinas/sangue , Citocinas/imunologia , Interleucina-10 , Camundongos , Opsonização , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa
14.
Curr Microbiol ; 78(5): 1864-1870, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33770213

RESUMO

Polymicrobial lung infections in individuals with Cystic Fibrosis (CF) contribute to the complexity of this disease and are a major cause of morbidity and mortality in the CF community. The microorganisms most commonly associated with severe airway infections in individuals with CF are the opportunistic pathogens S. aureus, P. aeruginosa and bacteria from the Burkholderia cepacia complex (Bcc), particularly B. cenocepacia and B. multivorans. Three Bcc strains, two S. aureus wild-type strains, and two derivative mutants were used to investigate the interplay between S. aureus and Bcc with a focus on the hemolytic activity of Bcc. Our results revealed that extracellular products from S. aureus potentiated the hemolysis of Bcc strains. Moreover, this effect was influenced by the composition of the medium in which S. aureus is grown. These findings contribute towards the understanding of the impact of interactions between S. aureus and Bcc and their possible implications in the context of co-infections by these pathogens in individuals with CF.


Assuntos
Infecções por Burkholderia , Complexo Burkholderia cepacia , Fibrose Cística , Complexo Burkholderia cepacia/genética , Fibrose Cística/complicações , Hemólise , Humanos , Staphylococcus aureus
15.
JAMA Netw Open ; 2(12): e1916526, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31790569

RESUMO

Importance: Immune dysregulation can increase the risk of infection, malignant neoplasms, and cardiovascular disease, but improved methods are needed to identify and quantify immunologic hazard in the general population. Objective: To determine whether lymphopenia is associated with reduced survival in outpatients. Design, Setting, and Participants: This retrospective cohort study of the National Health and Nutrition Examination Survey (NHANES) included participants enrolled from January 1, 1999, to December 31, 2010, a large outpatient sample representative of the US adult population. Associations were evaluated between lymphopenia and other immunohematologic (IH) markers, clinical features, and survival during 12 years of follow-up, completed on December 31, 2011. Spearman correlations, Cox proportional hazards regression models, and Kaplan-Meier curves were used in univariable and multivariable models, allowing for nonlinear associations with bivariate cubic polynomials. Data were analyzed from September 1, 2018, through July 24, 2019. Exposures: Absolute lymphocyte counts (ALC), red blood cell distribution width (RDW), and C-reactive protein (CRP) level. Main Outcomes and Measures: All-cause survival. Results: Among the 31 178 participants, the median (interquartile range) age at baseline was 45 (30-63) years, 16 093 (51.6%) were women, 16 260 (52.2%) were nonwhite, and overall 12-year rate of survival was 82.8%. Relative lymphopenia (≤1500/µL) and severe lymphopenia (≤1000/µL) were observed in 20.1% and 3.0%, respectively, of this general population and were associated with increased risk of mortality (age- and sex-adjusted hazard ratios [HRs], 1.3 [95% CI, 1.2-1.4] and 1.8 [95% CI, 1.6-2.1], respectively) due to cardiovascular and noncardiovascular causes. Lymphopenia was also associated with worse survival in multivariable models, including traditional clinical risk factors, and this risk intensified when accompanied by bone marrow dysregulation (elevated RDW) and/or inflammation (elevated CRP level). Ten-year mortality ranged from 3.8% to 62.1% based on lymphopenia status, tertile of CRP level, and tertile of RDW. A high-risk IH profile was nearly twice as common as type 2 diabetes (19.3% and 10.0% of participants, respectively) and associated with a 3-fold risk of mortality (HR, 3.2; 95% CI, 2.6-4.0). Individuals aged 70 to 79 years with low IH risk had a better 10-year survival (74.1%) than those who were a decade younger with a high-risk IH profile (68.9%). Conclusions and Relevance: These findings suggest that lymphopenia is associated with reduced survival independently of and additive to traditional risk factors, especially when accompanied by altered erythropoiesis and/or heightened inflammation. Immune risk may be analyzed as a multidimensional entity derived from routine tests, facilitating precision medicine and population health interventions.


Assuntos
Linfopenia/mortalidade , Adulto , Idoso , Biomarcadores/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos Nutricionais , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida , Estados Unidos/epidemiologia
16.
mBio ; 10(2)2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862744

RESUMO

Multidrug-resistant (MDR) Acinetobacter spp. poses a significant therapeutic challenge in part due to the presence of chromosomally encoded ß-lactamases, including class C Acinetobacter-derived cephalosporinases (ADC) and class D oxacillinases (OXA), as well as plasmid-mediated class A ß-lactamases. Importantly, OXA-like ß-lactamases represent a gap in the spectrum of inhibition by recently approved ß-lactamase inhibitors such as avibactam and vaborbactam. ETX2514 is a novel, rationally designed, diazabicyclooctenone inhibitor that effectively targets class A, C, and D ß-lactamases. We show that addition of ETX2514 significantly increased the susceptibility of clinical Acinetobacterbaumannii isolates to sulbactam. AdeB and AdeJ were identified to be key efflux constituents for ETX2514 in A. baumannii The combination of sulbactam and ETX2514 was efficacious against A. baumannii carrying blaTEM-1, blaADC-82, blaOXA-23, and blaOXA-66 in a neutropenic murine thigh infection model. We also show that, in vitro, ETX2514 inhibited ADC-7 (k2/Ki 1.0 ± 0.1 × 106 M-1 s-1) and OXA-58 (k2/Ki 2.5 ± 0.3 × 105 M-1 s-1). Cocrystallization of ETX2514 with OXA-24/40 revealed hydrogen bonding interactions between ETX2514 and residues R261, S219, and S128 of OXA-24/40 in addition to a chloride ion occupied in the active site. Further, the C3 methyl group of ETX2514 shifts the position of M223. In conclusion, the sulbactam-ETX2514 combination possesses a broadened inhibitory range to include class D ß-lactamases as well as class A and C ß-lactamases and is a promising therapeutic candidate for infections caused by MDR Acinetobacter spp.IMPORTANCE The number and diversity of ß-lactamases are steadily increasing. The emergence of ß-lactamases that hydrolyze carbapenems poses a significant threat to our antibiotic armamentarium. The explosion of OXA enzymes that are carbapenem hydrolyzers is a major challenge (carbapenem-hydrolyzing class D [CHD]). An urgent need exists to discover ß-lactamase inhibitors with class D activity. The sulbactam-ETX2514 combination demonstrates the potential to become a treatment regimen of choice for Acinetobacter spp. producing class D ß-lactamases.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/administração & dosagem , Compostos Azabicíclicos/administração & dosagem , Sulbactam/administração & dosagem , Inibidores de beta-Lactamases/administração & dosagem , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Cristalografia por Raios X , Modelos Animais de Doenças , Camundongos , Ligação Proteica , Conformação Proteica , Sulbactam/farmacologia , Resultado do Tratamento , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo
17.
Curr Microbiol ; 76(4): 485-494, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30783798

RESUMO

Burkholderia contaminans is a member of the Burkholderia cepacia complex (Bcc), a pathogen with increasing prevalence among cystic fibrosis (CF) patients and the cause of numerous outbreaks due to the use of contaminated commercial products. The antibiotic resistance determinants, particularly ß-lactamases, have been poorly studied in this species. In this work, we explored the whole genome sequence (WGS) of a B. contaminans isolate (FFH 2055) and detected four putative ß-lactamase-encoding genes. In general, these genes have more than 93% identity with ß-lactamase genes found in other Bcc species. Two ß-lactamases, a class A (Pen-like, suggested name PenO) and a class D (OXA-like), were further analyzed and characterized. Amino acid sequence comparison showed that Pen-like has 82% and 67% identity with B. multivorans PenA and B. pseudomallei PenI, respectively, while OXA-like displayed strong homology with class D enzymes within the Bcc, but only 22-44% identity with available structures from the OXA family. PCR reactions designed to study the presence of these two genes revealed a heterogeneous distribution among clinical and industrial B. contaminans isolates. Lastly, blaPenO gene was cloned and expressed into E. coli to investigate the antibiotic resistance profile and confers an extended-spectrum ß-lactamase (ESBL) phenotype. These results provide insight into the presence of ß-lactamases in B. contaminans, suggesting they play a role in antibiotic resistance of these bacteria.


Assuntos
Proteínas de Bactérias/genética , Complexo Burkholderia cepacia/enzimologia , Complexo Burkholderia cepacia/genética , Genoma Bacteriano/genética , beta-Lactamases/genética , Sequência de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Infecções por Burkholderia/microbiologia , Complexo Burkholderia cepacia/efeitos dos fármacos , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Homologia de Sequência de Aminoácidos , beta-Lactamases/química , beta-Lactamases/metabolismo
18.
Open Forum Infect Dis ; 5(5): ofy089, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30568987

RESUMO

BACKGROUND: Cefazolin and ceftriaxone are frequently used to treat methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia, especially in the realm of outpatient parenteral antimicrobial therapy. Both antimicrobials have been associated with favorable clinical outcomes for mixed MSSA infections. However, limited published data exist specifically comparing the use of these agents for the treatment of MSSA bacteremia. METHODS: We conducted a retrospective cohort study of Veteran patients with MSSA bacteremia who received ≥14 days of cefazolin or ceftriaxone between 2009 and 2014. Rates of treatment failure were compared between both groups. Treatment failure was defined as therapy extension, incomplete therapy, unplanned oral suppressive therapy, relapse of infection, or hospital admission or surgery within 90 days. RESULTS: Out of 71 patients, 38 received treatment with cefazolin and 33 with ceftriaxone. The overall rate of treatment failure was 40.8%, with significantly more failures among patients receiving ceftriaxone (54.5% versus 28.9%; P = .029). Factors associated with treatment failure included longer duration of parenteral therapy, heart failure, and treatment in an external skilled nursing facility as compared with treatment in the Department of Veterans Affairs attached Community Living Center. CONCLUSIONS: Ceftriaxone had a higher rate of treatment failure than cefazolin for the treatment of MSSA bacteremia in a Veteran population. Potential reasons for this could include the higher protein binding of ceftriaxone, ultimately resulting in lower serum concentrations of free drug, or other unknown factors. Further studies are warranted to confirm these results.

19.
Open Forum Infect Dis ; 5(7): ofy168, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30090839

RESUMO

Ibrutinib is an irreversible inhibitor of Bruton's tyrosine kinase approved for the treatment of B-cell malignancies. There is growing concern about the risk of opportunistic infections following ibrutinib therapy. Herein, we describe the first case of Mycobacterium chelonae skin and soft tissue infection in a patient receiving ibrutinib and recount the challenges in treating this infection.

20.
Expert Rev Anti Infect Ther ; 16(2): 89-110, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29310479

RESUMO

INTRODUCTION: Non-fermenting Gram-negative bacilli are at the center of the antimicrobial resistance epidemic. Acinetobacter baumannii and Pseudomonas aeruginosa are both designated with a threat level to human health of 'serious' by the Centers for Disease Control and Prevention. Two other major non-fermenting Gram-negative bacilli, Stenotrophomonas maltophilia and Burkholderia cepacia complex, while not as prevalent, have devastating effects on vulnerable populations, such as those with cystic fibrosis, as well as immunosuppressed or hospitalized patients. Areas covered: In this review, we summarize the clinical impact, presentations, and mechanisms of resistance of these four major groups of non-fermenting Gram-negative bacilli. We also describe available and promising novel therapeutic options and strategies, particularly combination antibiotic strategies, with a focus on multidrug resistant variants. Expert commentary: We finally advocate for a therapeutic approach that incorporates in vitro antibiotic susceptibility testing with molecular and genotypic characterization of mechanisms of resistance, as well as pharmacokinetics and pharmacodynamics (PK/PD) parameters. The goal is to begin to formulate a precision medicine approach to antimicrobial therapy: a clinical-decision making model that integrates bacterial phenotype, genotype and patient's PK/PD to arrive at rationally-optimized combination antibiotic chemotherapy regimens tailored to individual clinical scenarios.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Antibacterianos/farmacocinética , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Terapia de Alvo Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA