Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32075930

RESUMO

The major histocompatibility complex (MHC) class I region of humans, chimpanzees (Pan troglodytes), and bonobos (Pan paniscus) is highly similar, and orthologues of HLA-A, -B, and -C are present in both Pan species. Based on functional characteristics, the different HLA-A allotypes are classified into different supertypes. One of them, the HLA A03 supertype, is widely distributed among different human populations. All contemporary known chimpanzee and bonobo MHC class I A allotypes cluster genetically into one of the six HLA-A families, the HLA-A1/A3/A11/A30 family. We report here that the peptide-binding motif of the Patr-A*05:01 allotype, which is commonly present in a cohort of western African chimpanzees, has a strong preference for binding peptides with basic amino acids at the carboxyl terminus. This phenomenon is shared with the family members of the HLA A03 supertype. Based on the chemical similarities in the peptide-binding pocket, we inferred that the preference for binding peptides with basic amino acids at the carboxyl terminus is widely present among the human, chimpanzee, and bonobo MHC-A allotypes. Subsequent in silico peptide-binding predictions illustrated that these allotypes have the capacity to target conserved parts of the proteome of human immunodeficiency virus type 1 (HIV-1) and the simian immunodeficiency virus SIVcpz.IMPORTANCE Most experimentally infected chimpanzees seem to control an HIV-1 infection and are therefore considered to be relatively resistant to developing AIDS. Contemporary free-ranging chimpanzees may carry SIVcpz, and there is evidence for AIDS-like symptoms in these free-ranging animals, whereas SIV infections in bonobos appear to be absent. In humans, the natural control of an HIV-1 infection is strongly associated with the presence of particular HLA class I allotypes. The ancestor of the contemporary living chimpanzees and bonobos survived a selective sweep targeting the MHC class I repertoire. We have put forward a hypothesis that this may have been caused by an ancestral retroviral infection similar to SIVcpz. Characterization of the relevant MHC allotypes may contribute to understanding the shaping of their immune repertoire. The abundant presence of MHC-A allotypes that prefer peptides with basic amino acids at the C termini suggests that these molecules may contribute to the control of retroviral infections in humans, chimpanzees, and bonobos.


Assuntos
Genes MHC Classe I/imunologia , Antígeno HLA-A3/imunologia , Primatas/imunologia , Alelos , Sequência de Aminoácidos , Animais , HIV-1/imunologia , Antígeno HLA-A3/metabolismo , Antígenos de Histocompatibilidade , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Pan paniscus/imunologia , Pan troglodytes/imunologia , Peptídeos/metabolismo , Filogenia , Ligação Proteica/imunologia , Infecções por Retroviridae/imunologia , Vírus da Imunodeficiência Símia/imunologia
2.
J Immunol ; 199(10): 3679-3690, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29021373

RESUMO

In different macaque species, the MHC A2*05 gene is present in abundance, and its gene products are characterized by low cell-surface expression and a highly conserved peptide-binding cleft. We have characterized the peptide-binding motif of Mamu-A2*05:01, and elucidated the binding capacity for virus-derived peptides. The macaque A2*05 allotype prefers the basic amino acid arginine at the second position of the peptide, and hydrophobic and polar amino acids at the C-terminal end. These preferences are shared with HLA-B*27 and Mamu-B*008, molecules shown to be involved in elite control in human HIV type 1 and macaque SIV infections, respectively. In contrast, however, Mamu-A2*05 preferentially binds 8-mer peptides. Retention in the endoplasmic reticulum seems to be the cause of the lower cell-surface expression. Subsequent peptide-binding studies have illustrated that Mamu-A2*05:01 is able to bind SIV-epitopes known to evoke a strong CD8+ T cell response in the context of the Mamu-B*008 allotype in SIV-infected rhesus macaques. Thus, the macaque A2*05 gene encodes a specialized MHC class I molecule, and is most likely transported to the cell surface only when suitable peptides become available.


Assuntos
Epitopos de Linfócito T/metabolismo , Infecções por HIV/imunologia , HIV/fisiologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Linfócitos T Citotóxicos/imunologia , Animais , Apresentação de Antígeno , Linhagem Celular , Epitopos de Linfócito T/genética , Predisposição Genética para Doença , Antígenos HIV/metabolismo , Infecções por HIV/genética , Antígeno HLA-B27/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunidade Celular , Macaca , Peptídeos/metabolismo , Ligação Proteica , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Carga Viral , Replicação Viral
3.
Primate Biol ; 4(1): 117-125, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32110699

RESUMO

Endometriosis is a poorly understood common debilitating women's reproductive disorder resulting from proliferative and ectopic endometrial tissue associated with variable clinical symptoms including dysmenorrhea (painful menstrual periods), dyspareunia (pain on intercourse), female infertility, and an increased risk of malignant transformation. The rhesus macaque (Macaca mulatta) develops a spontaneous endometriosis that is very similar to that seen in women. We hypothesized that specific major histocompatibility complex (MHC) alleles may contribute to the pathogenesis of endometriosis. As part of a collaboration between the Biomedical Primate Research Centre (BPRC) in the Netherlands and the New England Primate Research Center (NEPRC) in the United States, we analyzed DNA sequences of MHC class I (Macaca mulatta, Mamu-A1) and class II (Mamu-DRB) alleles from rhesus macaques with endometriosis and compared the allele frequencies with those of age-matched healthy macaques. We demonstrate that two MHC class I alleles are overrepresented in diseased macaques compared to controls: Mamu-A1*001, 33.3 % in BPRC animals with endometriosis vs. 11.6 % in healthy macaques ( p =  0.007), and Mamu-A1*007, 21.9 % NEPRC rhesus macaques vs. 6.7 %, ( p =  0.003). We provide evidence that select MHC class I alleles are associated with endometriosis in rhesus macaques and suggest that the disease pathogenesis contribution of MHC class I warrants further research.

4.
PLoS One ; 11(4): e0154194, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27105073

RESUMO

microRNAs are crucial post-transcriptional regulators of gene expression involved in a wide range of biological processes. Although microRNAs are highly conserved among species, the functional implications of existing lineage-specific changes and their role in determining differences between humans and other great apes have not been specifically addressed. We analyzed the recent evolutionary history of 1,595 human microRNAs by looking at their intra- and inter-species variation in great apes using high-coverage sequenced genomes of 82 individuals including gorillas, orangutans, bonobos, chimpanzees and humans. We explored the strength of purifying selection among microRNA regions and found that the seed and mature regions are under similar and stronger constraint than the precursor region. We further constructed a comprehensive catalogue of microRNA species-specific nucleotide substitutions among great apes and, for the first time, investigated the biological relevance that human-specific changes in microRNAs may have had in great ape evolution. Expression and functional analyses of four microRNAs (miR-299-3p, miR-503-3p, miR-508-3p and miR-541-3p) revealed that lineage-specific nucleotide substitutions and changes in the length of these microRNAs alter their expression as well as the repertoires of target genes and regulatory networks. We suggest that the studied molecular changes could have modified crucial microRNA functions shaping phenotypes that, ultimately, became human-specific. Our work provides a frame to study the impact that regulatory changes may have in the recent evolution of our species.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Variação Genética , Hominidae/genética , MicroRNAs/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Análise por Conglomerados , Evolução Molecular , Redes Reguladoras de Genes , Gorilla gorilla/genética , Humanos , MicroRNAs/química , MicroRNAs/classificação , Conformação de Ácido Nucleico , Pan paniscus/genética , Pan troglodytes/genética , Pongo/genética , Análise de Componente Principal , Especificidade da Espécie
5.
PLoS One ; 9(4): e95103, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24740375

RESUMO

A single correlate of effective vaccine protection against chronic HCV infection has yet to be defined. In this study, we analyzed T-cell responses in four chimpanzees, immunized with core-E1-E2-NS3 and subsequently infected with HCV1b. Viral clearance was observed in one animal, while the other three became chronically infected. In the animal that cleared infection, NS3-specific CD8 T-cell responses were observed to be more potent in terms of frequency and polyfunctionality of cytokine producing cells. Unique to this animal was the presence of killing-competent CD8 T-cells, specific for NS3 1258-1272, being presented by the chimpanzee MHC class I molecule Patr-A*03∶01, and a high affinity recognition of this epitope. In the animals that became chronically infected, T-cells were able to produce cytokines against the same peptide but no cytolysis could be detected. In conclusion, in the animal that was able to clear HCV infection not only cytokine production was observed but also cytolytic potential against specific MHC class I/peptide-combinations.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Hepacivirus/imunologia , Hepatite C/prevenção & controle , Vacinas contra Hepatite Viral/imunologia , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Citocinas/biossíntese , Epitopos/química , Epitopos/imunologia , Expressão Gênica , Hepatite C/imunologia , Hepatite C/virologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunização , Dados de Sequência Molecular , Pan troglodytes , Proteínas do Core Viral/administração & dosagem , Proteínas do Core Viral/genética , Proteínas do Core Viral/imunologia , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/genética , Proteínas não Estruturais Virais/administração & dosagem , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
6.
AIDS ; 27(18): 2841-51, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24105029

RESUMO

OBJECTIVES: We recently developed a HIVconsv vaccine strategy, consisting of combined conserved regions of HIV-1, to adequately cover viral diversity. To evaluate efficacy in nonhuman primates, an equivalent SIV-derived immunogen SIVconsv was designed and delivered as plasmid DNA or synthetic long peptides. DESIGN: Rhesus macaques lacking protective MHC class I alleles Mamu-A*001 : 01, B*008 : 01, B*017 : 01 were immunized with either SIVconsv synthetic long peptides (S) alone or in combination with plasmid DNA encoding the same conserved regions (D) using SSS or DDSS regimens. METHODS: The SIVconsv synthetic long peptide vaccine consisted of 46 approximately 30-amino acid-long peptides emulsified in Montanide ISA-720 and adjuvanted with pegylated type I interferon and imiquimod. RESULTS: Both SSS and DDSS regimens generated high frequencies of SIV-specific IFN-γ-producing cells comparable with reported adenoviral vector systems. Strong polyfunctional CD4⁺ T-cell and modest CD8⁺ T-cell responses were generated, which were of central memory T-cell phenotype. Furthermore, SIVconsv-specific antibody responses were induced capable of recognizing the Env glycoprotein. Eight weeks after the last immunization, control and SIVconsv-vaccinated animals were challenged intrarectally with 10 MID50 of pathogenic SIVmac251. Two out of six animals in the DDSS group were protected against infection, while all 14 animals in the SSS and two control groups were infected. Vaccine induced SIV-specific IgG responses in mucosal washes prechallenge were highest in the two protected animals. CONCLUSION: This study demonstrates that vaccine-elicited responses towards conserved regions can afford partial protection against a high-dose intrarectal SIVmac251 challenge.


Assuntos
Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacinação/métodos , Vacinas de DNA/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Macaca mulatta , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
7.
Immunogenetics ; 65(12): 897-900, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24042460

RESUMO

Indian and Chinese rhesus macaques are often used in biomedical research. Genetic analyses of the major histocompatibility class I region have revealed that these macaques display a substantial level of polymorphism at Mamu-A and Mamu-B loci, which have been subject to duplication. Only a few Mamu class I allotypes are characterised for their peptide-binding motifs, although more information of this nature would contribute to a better interpretation of T cell-mediated immune responses. Here, we present the results of the characterisation of the functional properties of Mamu-B*037:01, an allotype commonly encountered in rhesus macaques of Indian and Chinese origin. Mamu-B*037:01 is seen to have a strong preference for acidic amino acids at the third residue, and for arginine, lysine, and tyrosine at the carboxyl terminus. This peptide-binding motif is not described in the human population.


Assuntos
Motivos de Aminoácidos/genética , Genes MHC da Classe II/genética , Macaca mulatta/genética , Peptídeos/genética , Animais , Povo Asiático , Genes MHC da Classe II/imunologia , Humanos , Índia , Macaca mulatta/imunologia
8.
J Immunol ; 187(11): 5995-6001, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22043011

RESUMO

Genetic factors such as the MHC influence the immunocompetence of an individual. MHC genes are the most polymorphic genes in primates, which is often interpreted as an adaptation to establish good T cell responses to a wide range of (evolving) pathogens. Chimpanzee MHC (Patr) genes are less polymorphic than human MHC (HLA) genes, which is surprising because chimpanzee is the older species of the two and is therefore expected to display more variation. To quantify the effect of the reduced polymorphism, we compared the peptide binding repertoire of human and chimpanzee MHC molecules. Using a peptide-MHC binding predictor and proteomes of >900 mammalian viruses, we show that, at the population level, the total peptide binding repertoire of Patr-A molecules is ~36% lower than that of their human counterparts, whereas the reduction of the peptide binding repertoire of the Patr-B locus is only 15%. In line with these results, different Patr-A molecules turn out to have largely overlapping peptide binding repertoires, whereas the Patr-B molecules are more distinct from each other. This difference is somewhat less apparent at the individual level, where we found that only 25% of the viruses are significantly better presented by "simulated" humans with heterozygous HLA-A and -B loci. Taken together, our results indicate that the Patr-B molecules recovered more after the selective sweep, whereas the Patr-A locus shows the most signs of the selective sweep with regard to its peptide binding repertoire.


Assuntos
Apresentação de Antígeno/genética , Antígenos Virais/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Complexo Principal de Histocompatibilidade/genética , Pan troglodytes/genética , Filogenia , Sequência de Aminoácidos , Animais , Apresentação de Antígeno/imunologia , Sequência de Bases , Antígenos de Histocompatibilidade Classe I/imunologia , Hominidae/genética , Humanos , Dados de Sequência Molecular , Pan troglodytes/imunologia , Peptídeos/imunologia , Polimorfismo Genético , Seleção Genética
9.
J Virol ; 85(13): 6442-52, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21490092

RESUMO

Major histocompatibility complex (MHC) molecules expressed on the surface of human immunodeficiency virus (HIV) are potential targets for neutralizing antibodies. Since MHC molecules are polymorphic, nonself MHC can also be immunogenic. We have used combinations of novel recombinant HLA class I and II and HIV/simian immunodeficiency virus (SIV) antigens, all linked to dextran, to investigate whether they can elicit protective immunity against heterologous simian/human immunodeficiency virus (SHIV) challenge in rhesus macaques. Three groups of animals were immunized with HLA (group 1, n = 8), trimeric YU2 HIV type 1 (HIV-1) gp140 and SIV p27 (HIV/SIV antigens; group 2, n = 8), or HLA plus HIV/SIV antigens (group 3, n = 8), all with Hsp70 and TiterMax Gold adjuvant. Another group (group 4, n = 6) received the same vaccine as group 3 without TiterMax Gold. Two of eight macaques in group 3 were completely protected against intravenous challenge with 18 50% animal infective doses (AID(50)) of SHIV-SF162P4/C grown in human cells expressing HLA class I and II lineages represented in the vaccine, while the remaining six macaques showed decreased viral loads compared to those in unimmunized animals. Complement-dependent neutralizing activity in serum and high levels of anti-HLA antibodies were elicited in groups 1 and 3, and both were inversely correlated with the plasma viral load at 2 weeks postchallenge. Antibody-mediated protection was strongly supported by the fact that transfer of pooled serum from the two challenged but uninfected animals protected two naïve animals against repeated low-dose challenge with the same SHIV stock. This study demonstrates that immunization with recombinant HLA in combination with HIV-1 antigens might be developed into an alternative strategy for a future AIDS vaccine.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Produtos do Gene gag/administração & dosagem , Infecções por HIV/prevenção & controle , Antígenos de Histocompatibilidade Classe II/administração & dosagem , Antígenos de Histocompatibilidade Classe I/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Produtos do Gene env do Vírus da Imunodeficiência Humana/administração & dosagem , Animais , Feminino , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , HIV-1/patogenicidade , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunização , Macaca mulatta/imunologia , Dados de Sequência Molecular , Recombinação Genética , Vacinas contra a SAIDS/administração & dosagem , Análise de Sequência de DNA , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Resultado do Tratamento , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
10.
J Gen Virol ; 91(Pt 12): 2974-84, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20826621

RESUMO

Recent advances in human immunodeficiency virus (HIV) vaccine design have resulted in induction of strong CD4 T-cell proliferative and polyfunctional cytokine responses, which are also characteristic for long-term non-progressing (LTNP) HIV-infected individuals. However, limited information is available on the persistence of these responses after infection. Results from studies in non-human primates indicate that vaccine-induced immune responses are partially maintained upon viral infection and differ from the responses seen in non-vaccinated animals that typically progress to disease. However, it is unclear how these partially preserved responses compare to immune responses that are acquired naturally by LTNP animals. In this study, immune-response profiles were compared between vaccinated animals that, upon SHIV89.6 challenge, became infected but were able to control virus replication, and a group of animals having spontaneous control of this viral infection. Both groups were found to develop very similar immune responses with regard to induction of CD4 and CD8 T-cell polyfunctional cytokine responses, proliferative capacity and cytotoxic capacity, as measured by a standard 51Cr release assay and more direct ex vivo and in vivo CTL assays. Hence, vaccinated animals that become infected, but control infection, appear to establish immune responses that are similar to those elicited by long-term non-progressors.


Assuntos
Produtos do Gene env/imunologia , Produtos do Gene gag/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Radioisótopos de Cromo/metabolismo , Citocinas/metabolismo , Citotoxicidade Imunológica , Humanos , Macaca mulatta , Replicação Viral
11.
Proc Natl Acad Sci U S A ; 107(34): 15175-80, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20696916

RESUMO

In the absence of treatment, most HIV-1-infected humans develop AIDS. However, a minority are long-term nonprogressors, and resistance is associated with the presence of particular HLA-B*27/B*57 molecules. In contrast, most HIV-1-infected chimpanzees do not contract AIDS. In comparison with humans, chimpanzees experienced an ancient selective sweep affecting the MHC class I repertoire. We have determined the peptide-binding properties of frequent chimpanzee MHC class I molecules, and show that, like HLA-B*27/B*57, they target similar conserved areas of HIV-1/SIV(cpz). In addition, many animals appear to possess multiple molecules targeting various conserved areas of the HIV-1/SIV(cpz) Gag protein, a quantitative aspect of the immune response that may further minimize the chance of viral escape. The functional characteristics of the contemporary chimpanzee MHC repertoire suggest that the selective sweep was caused by a lentiviral pandemic.


Assuntos
Síndrome da Imunodeficiência Adquirida/prevenção & controle , HIV-1/genética , HIV-1/imunologia , Antígenos HLA-B/genética , Antígeno HLA-B27/genética , Antígenos de Histocompatibilidade Classe I/genética , Pan troglodytes/genética , Pan troglodytes/imunologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Síndrome da Imunodeficiência Adquirida/genética , Síndrome da Imunodeficiência Adquirida/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Sequência Conservada , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Genes MHC Classe I , Sobreviventes de Longo Prazo ao HIV , Humanos , Dados de Sequência Molecular , Ligação Proteica , Especificidade da Espécie , Linfócitos T Citotóxicos/imunologia
12.
Gastroenterology ; 138(5): 1823-35, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20138039

RESUMO

BACKGROUND & AIMS: Gastrokines are stomach mucus cell-secreted proteins; 2 gastrokines are known, GKN1 and GKN2. Gastrokine expression is lost in gastric cancer, indicating a possible function in tumor suppression. We have identified a third gastrokine gene in mammals. METHODS: Gkn3 was characterized by studies of molecular structure, evolutionary conservation, and tissue expression as well as transcriptional/translational outcome in mouse genetic models of gastric pathology. The functional consequences of Gkn3 overexpression were evaluated in transfected cell lines. RESULTS: Gkn3 encodes a secreted (approximately 19 kilodalton) protein that is co-expressed with trefoil factor (Tff)2 in the distal stomach and discriminates a Griffinia simplicifolia lectin (GS)-II-positive mucus neck cell (MNC) subpopulation in the proximal stomach. In humans, widespread homozygosity for a premature stop codon polymorphism, W59X, has likely rendered GKN3 non-functional. Population genetic analysis revealed an ancestral GKN3 read-through allele that predominates in Africans and indicates the rapid expansion of W59X among non-Africans during recent evolution. Mouse Gkn3 expression is strongly up-regulated in (Tff2-deficient) gastric atrophy, a pre-cancerous state that is typically associated with Helicobacter pylori and marks a non-proliferative, GS-II positive lineage with features of spasmolytic polypeptide-expressing metaplasia (SPEM). Gkn3 overexpression inhibits proliferation in gastric epithelial cell lines, independently of incubation with recombinant human TFF2 or apoptosis. CONCLUSIONS: Gkn3 encodes a novel, functionally distinct gastrokine that is overexpressed and might restrain epithelial cell proliferation in gastric atrophy. Spread of the human GKN3 stop allele W59X might have been selected for among non-Africans because of its effects on pre-neoplastic outcomes in the stomach.


Assuntos
Proteínas de Transporte/genética , Mucosa Gástrica/metabolismo , Proteínas de Membrana/genética , Lesões Pré-Cancerosas/genética , Neoplasias Gástricas/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Animais , Apoptose , Povo Asiático/genética , Atrofia , População Negra/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Proliferação de Células , Códon sem Sentido , Sequência Conservada , Modelos Animais de Doenças , Evolução Molecular , Mucosa Gástrica/patologia , Frequência do Gene , Genótipo , Homozigoto , Humanos , Proteínas de Membrana/metabolismo , Metaplasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Mucinas/deficiência , Mucinas/genética , Mucinas/metabolismo , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Pan troglodytes , Peptídeos/deficiência , Peptídeos/genética , Peptídeos/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Proteínas Recombinantes/metabolismo , Estômago/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Fatores de Tempo , Transfecção , Fator Trefoil-2 , População Branca/genética
13.
PLoS One ; 4(1): e4287, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19172173

RESUMO

In humans, the single polymorphic B locus of the major histocompatibility complex is linked to the microsatellite MIB. In rhesus macaques, however, haplotypes are characterized by the presence of unique combinations of multiple B genes, which may display different levels of polymorphism. The aim of the study was to shed light on the evolutionary history of this highly complex region. First, the robustness of the microsatellite MIB-linked to almost half of the B genes in rhesus macaques (Mamu-B)-for accurate B haplotyping was studied. Based on the physical map of an established haplotype comprising 7 MIB loci, each located next to a certain Mamu-B gene, two MIB loci, MIB1 and MIB6, were investigated in a panel of MHC homozygous monkeys. MIB1 revealed a complex genotyping pattern, whereas MIB6 analysis resulted in the detection of one or no amplicon. Both patterns are specific for a given B haplotype, show Mendelian segregation, and even allow a more precise haplotype definition than do traditional typing methods. Second, a search was performed for retroelements that may have played a role in duplication processes as observed in the macaque B region. This resulted in the description of two types of duplicons. One basic unit comprises an expressed Mamu-B gene, adjacent to an HERV16 copy closely linked to MIB. The second type of duplicon comprises a Mamu-B (pseudo)gene, linked to a truncated HERV16 structure lacking its MIB segment. Such truncation seems to coincide with the loss of B gene transcription. Subsequent to the duplication processes, recombination between MIB and Mamu-B loci appears to have occurred, resulting in a hyperplastic B region. Thus, analysis of MIB in addition to B loci allows deciphering of the compound evolutionary history of the class I B region in Old World monkeys.


Assuntos
Genes MHC Classe I , Repetições de Microssatélites/genética , Retroviridae/genética , Animais , Clonagem Molecular , Feminino , Duplicação Gênica , Genótipo , Haplótipos , Homozigoto , Macaca mulatta , Masculino , Polimorfismo Genético , Retroelementos , Transcrição Gênica
14.
Immunogenetics ; 60(12): 737-48, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18956179

RESUMO

The DRB region of the major histocompatibility complex (MHC) of cynomolgus and rhesus macaques is highly plastic, and extensive copy number variation together with allelic polymorphism makes it a challenging enterprise to design a typing protocol. All intact DRB genes in cynomolgus monkeys (Mafa) appear to possess a compound microsatellite, DRB-STR, in intron 2, which displays extensive length polymorphism. Therefore, this STR was studied in a large panel of animals, comprising pedigreed families as well. Sequencing analysis resulted in the detection of 60 Mafa-DRB exon 2 sequences that were unambiguously linked to the corresponding microsatellite. Its length is often allele specific and follows Mendelian segregation. In cynomolgus and rhesus macaques, the nucleotide composition of the DRB-STR is in concordance with the phylogeny of exon 2 sequences. As in humans and rhesus monkeys, this protocol detects specific combinations of different DRB-STR lengths that are unique for each haplotype. In the present panel, 22 Mafa-DRB region configurations could be defined, which exceeds the number detected in a comparable cohort of Indian rhesus macaques. The results suggest that, in cynomolgus monkeys, even more frequently than in rhesus macaques, new haplotypes are generated by recombination-like events. Although both macaque species are known to share several identical DRB exon 2 sequences, the lengths of the corresponding microsatellites often differ. Thus, this method allows not only fast and accurate DRB haplotyping but may also permit discrimination between highly related macaque species.


Assuntos
Genes MHC da Classe II , Macaca fascicularis/genética , Macaca mulatta/genética , Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Animais , Sequência de Bases , DNA Mitocondrial/genética , DNA Ribossômico/genética , Éxons/genética , Masculino , Dados de Sequência Molecular , Filogenia , RNA Ribossômico/genética , Recombinação Genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
15.
Mol Immunol ; 45(10): 2743-51, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18395261

RESUMO

In most primate species, the class II region of the Major Histocompatibility Complex (MHC) displays diversity with regard to gene copy number and combination of DRB genes present per region configuration. Some of these loci exhibit extremely high levels of allelic variability, whereas others display only moderate levels of polymorphism. To understand the evolutionary history of the various HLA-DR region genes, a large number of full-length sequences of rhesus macaques, chimpanzees and humans were determined. The exon-intron organisation of the DRA gene, displaying only low levels of polymorphism, appears to have been highly conserved during primate evolution. The physical length of various DRB genes/alleles, however, fluctuates significantly in primates due to the presence of indels (insertions/deletions), mainly mapping to intron 1. Phylogenetic evidence supports the notion that the generation of new DRB genes is a dynamic and steadily ongoing process. Indeed, most of the primate DRB alleles investigated represent relatively young entities, possessing species-unique sequences. This seems to contradict the current view that the highly similar peptide binding motifs of many HLA-, Patr- and Mamu-DR molecules, encoded by exon 2 of the DRB gene, represent old entities, which predate primate speciation. As no evidence was found for convergent evolution, the combination of these two observations indicates that ancient peptide binding motifs are frequently reshuffled among duplicated members of the HLA-DRB multigene family.


Assuntos
Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Família Multigênica/genética , Peptídeos/metabolismo , Motivos de Aminoácidos , Animais , Sequência de Bases , Evolução Molecular , Éxons/genética , Antígenos HLA-DR/química , Humanos , Macaca/genética , Dados de Sequência Molecular , Pan troglodytes/genética , Filogenia , Polimorfismo Genético , Ligação Proteica , Seleção Genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
16.
BMC Genet ; 8: 72, 2007 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17942002

RESUMO

BACKGROUND: The X-linked SRPX2 gene encodes a Sushi Repeat-containing Protein of unknown function and is mutated in two disorders of the Rolandic/Sylvian speech areas. Since it is linked to defects in the functioning and the development of brain areas for speech production, SRPX2 may thus have participated in the adaptive organization of such brain regions. To address this issue, we have examined the recent molecular evolution of the SRPX2 gene. RESULTS: The complete coding region was sequenced in 24 human X chromosomes from worldwide populations and in six representative nonhuman primate species. One single, fixed amino acid change (R75K) has been specifically incorporated in human SRPX2 since the human-chimpanzee split. The R75K substitution occurred in the first sushi domain of SRPX2, only three amino acid residues away from a previously reported disease-causing mutation (Y72S). Three-dimensional structural modeling of the first sushi domain revealed that Y72 and K75 are both situated in the hypervariable loop that is usually implicated in protein-protein interactions. The side-chain of residue 75 is exposed, and is located within an unusual and SRPX-specific protruding extension to the hypervariable loop. The analysis of non-synonymous/synonymous substitution rate (Ka/Ks) ratio in primates was performed in order to test for positive selection during recent evolution. Using the branch models, the Ka/Ks ratio for the human branch was significantly different (p = 0.027) from that of the other branches. In contrast, the branch-site tests did not reach significance. Genetic analysis was also performed by sequencing 9,908 kilobases (kb) of intronic SRPX2 sequences. Despite low nucleotide diversity, neither the HKA (Hudson-Kreitman-Aguadé) test nor the Tajima's D test reached significance. CONCLUSION: The R75K human-specific variation occurred in an important functional loop of the first sushi domain of SRPX2, indicating that this evolutionary mutation may have functional importance; however, positive selection for R75K could not be demonstrated. Nevertheless, our data contribute to the first understanding of molecular evolution of the human SPRX2 gene. Further experiments are now required in order to evaluate the possible consequences of R75K on SRPX2 interactions and functioning.


Assuntos
Encefalopatias/genética , Evolução Molecular , Lobo Frontal , Proteínas do Tecido Nervoso/genética , Primatas/genética , Fala , Sequência de Aminoácidos , Animais , Feminino , Humanos , Proteínas de Membrana , Modelos Moleculares , Proteínas de Neoplasias , Filogenia , Polimorfismo de Nucleotídeo Único , Mapeamento de Interação de Proteínas , Alinhamento de Sequência , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA