Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 129, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39013889

RESUMO

Booster vaccinations are recommended to improve protection against severe disease from SARS-CoV-2 infection. With primary vaccinations involving various adenoviral vector and mRNA-based formulations, it remains unclear if these differentially affect the immune response to booster doses. We examined the effects of homologous (mRNA/mRNA) and heterologous (adenoviral vector/mRNA) vaccination on antibody and memory B cell (Bmem) responses against ancestral and Omicron subvariants. Healthy adults who received primary BNT162b2 (mRNA) or ChAdOx1 (vector) vaccination were sampled 1-month and 6-months after their 2nd and 3rd dose (homologous or heterologous) vaccination. Recombinant spike receptor-binding domain (RBD) proteins from ancestral, Omicron BA.2 and BA.5 variants were produced for ELISA-based serology, and tetramerized for immunophenotyping of RBD-specific Bmem. Dose 3 boosters significantly increased ancestral RBD-specific plasma IgG and Bmem in both cohorts. Up to 80% of ancestral RBD-specific Bmem expressed IgG1+. IgG4+ Bmem were detectable after primary mRNA vaccination, and expanded significantly to 5-20% after dose 3, whereas heterologous boosting did not elicit IgG4+ Bmem. Recognition of Omicron BA.2 and BA.5 by ancestral RBD-specific plasma IgG increased from 20% to 60% after the 3rd dose in both cohorts. Reactivity of ancestral RBD-specific Bmem to Omicron BA.2 and BA.5 increased following a homologous booster from 40% to 60%, but not after a heterologous booster. A 3rd mRNA dose generates similarly robust serological and Bmem responses in homologous and heterologous vaccination groups. The expansion of IgG4+ Bmem after mRNA priming might result from the unique vaccine formulation or dosing schedule affecting the Bmem response duration and antibody maturation.

2.
J Clin Immunol ; 43(7): 1506-1518, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37322095

RESUMO

Following the COVID-19 pandemic, novel vaccines have successfully reduced severe disease and death. Despite eliciting lower antibody responses, adenoviral vector vaccines are nearly as effective as mRNA vaccines. Therefore, protection against severe disease may be mediated by immune memory cells. We here evaluated plasma antibody and memory B cells (Bmem) targeting the SARS-CoV-2 Spike receptor-binding domain (RBD) elicited by the adenoviral vector vaccine ChAdOx1 (AstraZeneca), their capacity to bind Omicron subvariants, and compared this to the response to mRNA BNT162b2 (Pfizer-BioNTech) vaccination. Whole blood was sampled from 31 healthy adults pre-vaccination and 4 weeks after dose one and dose two of ChAdOx1. Neutralizing antibodies (NAb) against SARS-CoV-2 were quantified at each time point. Recombinant RBDs of the Wuhan-Hu-1 (WH1), Delta, BA.2, and BA.5 variants were produced for ELISA-based quantification of plasma IgG and incorporated separately into fluorescent tetramers for flow cytometric identification of RBD-specific Bmem. NAb and RBD-specific IgG levels were over eight times lower following ChAdOx1 vaccination than BNT162b2. In ChAdOx1-vaccinated individuals, median plasma IgG recognition of BA.2 and BA.5 as a proportion of WH1-specific IgG was 26% and 17%, respectively. All donors generated resting RBD-specific Bmem, which were boosted after the second dose of ChAdOx1 and were similar in number to those produced by BNT162b2. The second dose of ChAdOx1 boosted Bmem that recognized VoC, and 37% and 39% of WH1-specific Bmem recognized BA.2 and BA.5, respectively. These data uncover mechanisms by which ChAdOx1 elicits immune memory to confer effective protection against severe COVID-19.


Assuntos
Vacina BNT162 , COVID-19 , Adulto , Humanos , Células B de Memória , Pandemias , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Adenoviridae , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais
3.
J Virol ; 96(5): e0167521, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34986001

RESUMO

A vaccine to prevent hepatitis C virus (HCV) infection is urgently needed for use alongside direct-acting antiviral drugs to achieve elimination targets. We have previously shown that a soluble recombinant form of the glycoprotein E2 ectodomain (residues 384 to 661) that lacks three variable regions (Δ123) is able to elicit a higher titer of broadly neutralizing antibodies (bNAbs) than the parental form (receptor-binding domain [RBD]). In this study, we engineered a viral nanoparticle that displays HCV glycoprotein E2 on a duck hepatitis B virus (DHBV) small surface antigen (S) scaffold. Four variants of E2-S virus-like particles (VLPs) were constructed: Δ123-S, RBD-S, Δ123A7-S, and RBDA7-S; in the last two, 7 cysteines were replaced with alanines. While all four E2-S variant VLPs display E2 as a surface antigen, the Δ123A7-S and RBDA7-S VLPs were the most efficiently secreted from transfected mammalian cells and displayed epitopes recognized by cross-genotype broadly neutralizing monoclonal antibodies (bNMAbs). Both Δ123A7-S and RBDA7-S VLPs were immunogenic in guinea pigs, generating high titers of antibodies reactive to native E2 and able to prevent the interaction between E2 and the cellular receptor CD81. Four out of eight animals immunized with Δ123A7-S elicited neutralizing antibodies (NAbs), with three of those animals generating bNAbs against 7 genotypes. Immune serum generated by animals with NAbs mapped to major neutralization epitopes located at residues 412 to 420 (epitope I) and antigenic region 3. VLPs that display E2 glycoproteins represent a promising vaccine platform for HCV and could be adapted to large-scale manufacturing in yeast systems. IMPORTANCE There is currently no vaccine to prevent hepatitis C virus infection, which affects more than 71 million people globally and is a leading cause of progressive liver disease, including cirrhosis and cancer. Broadly neutralizing antibodies that recognize the E2 envelope glycoprotein can protect against heterologous viral infection and correlate with viral clearance in humans. However, broadly neutralizing antibodies are difficult to generate due to conformational flexibility of the E2 protein and epitope occlusion. Here, we show that a VLP vaccine using the duck hepatitis B virus S antigen fused to HCV glycoprotein E2 assembles into virus-like particles that display epitopes recognized by broadly neutralizing antibodies and elicit such antibodies in guinea pigs. This platform represents a novel HCV vaccine candidate amenable to large-scale manufacture at low cost.


Assuntos
Hepacivirus , Hepatite C , Proteínas do Envelope Viral , Vacinas contra Hepatite Viral , Animais , Antígenos de Superfície/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Epitopos/imunologia , Cobaias , Hepacivirus/genética , Hepacivirus/imunologia , Antígenos de Superfície da Hepatite B/química , Hepatite C/imunologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia
4.
J Hepatol ; 72(4): 670-679, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31785346

RESUMO

BACKGROUND & AIMS: Neutralising antibodies (NAbs) play a key role in clearance of HCV. NAbs have been isolated and mapped to several domains on the HCV envelope proteins. However, the immunodominance of these epitopes in HCV infection remains unknown, hindering efforts to elicit optimal epitope-specific responses. Furthermore, it remains unclear which epitope-specific responses are associated with broad NAb (bNAb) activity in primary HCV infection. The aim of this study was to define B cell immunodominance in primary HCV, and its implications on neutralisation breadth and clearance. METHODS: Using samples from 168 patients with primary HCV infection, the antibody responses targeted 2 immunodominant domains, termed domains B and C. Genotype 1 and 3 infections were associated with responses targeted towards different bNAb domains. RESULTS: No epitopes were uniquely targeted by clearers compared to those who developed chronic infection. Samples with bNAb activity were enriched for multi-specific responses directed towards the epitopes antigenic region 3, antigenic region 4, and domain D, and did not target non-neutralising domains. CONCLUSIONS: This study outlines for the first time a clear NAb immunodominance profile in primary HCV infection, and indicates that it is influenced by the infecting virus. It also highlights the need for a vaccination strategy to induce multi-specific responses that do not target non-neutralising domains. LAY SUMMARY: Neutralising antibodies will likely form a key component of a protective hepatitis C virus vaccine. In this work we characterise the predominant neutralising and non-neutralising antibody (epitope) targets in acute hepatitis C virus infection. We have defined the natural hierarchy of epitope immunodominance, and demonstrated that viral genotype can impact on this hierarchy. Our findings highlight key epitopes that are associated with broadly neutralising antibodies, and the deleterious impact of mounting a response towards some of these domains on neutralising breadth. These findings should guide future efforts to design immunogens aimed at generating neutralising antibodies with a vaccine candidate.


Assuntos
Linfócitos B/imunologia , Epitopos de Linfócito B/imunologia , Hepacivirus/imunologia , Hepatite C/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Austrália/epidemiologia , Feminino , Genótipo , Hepacivirus/genética , Hepatite C/epidemiologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Masculino , Estudos Prospectivos , Soroconversão , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia
5.
Viral Immunol ; 31(4): 338-343, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29489437

RESUMO

The development of an effective preventative hepatitis C virus (HCV) vaccine will reside, in part, in its ability to elicit neutralizing antibodies (NAbs). We previously reported a genotype 1a HCV virus like particle (VLP) vaccine that produced HCV specific NAb and T cell responses that were substantially enhanced by Toll-like receptor 2 (TLR2) agonists. We have now produced a quadrivalent genotype 1a/1b/2a/3a HCV VLP vaccine and tested the ability of two TLR2 agonists, R4Pam2Cys and E8Pam2Cys, to stimulate the production of NAb. We now show that our vaccine with R4Pam2Cys or E8Pam2Cys produces strong antibody and NAb responses in vaccinated mice after just two doses. Total antibody titers were higher in mice inoculated with vaccine plus E8Pam2Cys compared to HCV VLPs alone. However, the TLR2 agonists did not result in stronger NAb responses compared to vaccine without adjuvant. Such a vaccine could provide a substantial addition to the overall goal to eliminate HCV.


Assuntos
Anticorpos Neutralizantes/sangue , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/sangue , Hepatite C/imunologia , Receptor 2 Toll-Like/química , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas do Envelope Viral/química , Adjuvantes Imunológicos/administração & dosagem , Animais , Linhagem Celular , Modelos Animais de Doenças , Hepatite C/sangue , Anticorpos Anti-Hepatite C/classificação , Humanos , Esquemas de Imunização , Lipopeptídeos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Organismos Livres de Patógenos Específicos , Receptor 2 Toll-Like/agonistas , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/imunologia
6.
J Virol ; 92(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29467319

RESUMO

The hepatitis C virus (HCV) E2 glycoprotein is a major target of the neutralizing antibody (nAb) response, with multiple type-specific and broadly neutralizing antibody (bnAb) epitopes identified. The 412-to-423 region can generate bnAbs that block interaction with the cell surface receptor CD81, with activity toward multiple HCV genotypes. In this study, we reveal the structure of rodent monoclonal antibody 24 (MAb24) with an extensive contact area toward a peptide spanning the 412-to-423 region. The crystal structure of the MAb24-peptide 412-to-423 complex reveals the paratope bound to a peptide hairpin highly similar to that observed with human MAb HCV1 and rodent MAb AP33, but with a different angle of approach. In viral outgrowth experiments, we demonstrated three distinct genotype 2a viral populations that acquired resistance to MAb24 via N415D, N417S, and N415D/H386R mutations. Importantly, the MAb24-resistant viruses exhibited significant increases in sensitivity to the majority of bnAbs directed to epitopes within the 412-to-423 region and in additional antigenic determinants located within E2 and the E1E2 complex. This study suggests that modification of N415 causes a global change in glycoprotein structure that increases its vulnerability to neutralization by other antibodies. This finding suggests that in the context of an antibody response to viral infection, acquisition of escape mutations in the 412-to-423 region renders the virus more susceptible to neutralization by other specificities of nAbs, effectively reducing the immunological fitness of the virus. A vaccine for HCV that generates polyspecific humoral immunity with specificity for the 412-to-423 region and at least one other region of E2 is desirable.IMPORTANCE Understanding how antibodies neutralize hepatitis C virus (HCV) is essential for vaccine development. This study reveals for the first time that when HCV develops resistance to a major class of bnAbs targeting the 412-to-423 region of E2, this results in a concomitant increase in sensitivity to neutralization by a majority of other bnAb specificities. Vaccines for the prevention of HCV infection should therefore generate bnAbs directed toward the 412-to-423 region of E2 and additional bnAb epitopes within the viral glycoproteins.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Epitopos/metabolismo , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Complexo Antígeno-Anticorpo/imunologia , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Epitopos/imunologia , Hepacivirus/genética , Anticorpos Anti-Hepatite C/metabolismo , Humanos , Neoplasias Hepáticas , Estrutura Secundária de Proteína , Tetraspanina 28/imunologia , Vacinas contra Hepatite Viral/imunologia
7.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031364

RESUMO

The hepatitis C virus (HCV) envelope glycoprotein E2 is the major target of broadly neutralizing antibodies in vivo and is the focus of efforts in the rational design of a universal B cell vaccine against HCV. The E2 glycoprotein exhibits a high degree of amino acid variability which localizes to three discrete regions: hypervariable region 1 (HVR1), hypervariable region 2 (HVR2), and the intergenotypic variable region (igVR). All three variable regions contribute to immune evasion and/or isolate-specific structural variations, both important considerations for vaccine design. A high-resolution structural definition of the intact HCV envelope glycoprotein complex containing E1 and E2 remains to be elucidated, while crystallographic structures of a recombinant E2 ectodomain failed to resolve HVR1, HVR2, and a major neutralization determinant adjacent to HVR1. To obtain further information on E2, we characterized the role of all three variable regions in E2 ectodomain folding and function in the context of a recombinant ectodomain fragment (rE2). We report that removal of the variable regions accelerates binding to the major host cell receptor CD81 and that simultaneous deletion of HVR2 and the igVR is required to maintain wild-type CD81-binding characteristics. The removal of the variable regions also rescued the ability of rE2 to form a functional homodimer. We propose that the rE2 core provides novel insights into the role of the variable motifs in the higher-order assembly of the E2 ectodomain and may have implications for E1E2 structure on the virion surface. IMPORTANCE Hepatitis C virus (HCV) infection affects ∼2% of the population globally, and no vaccine is available. HCV is a highly variable virus, and understanding the presentation of key antigenic sites at the virion surface is important for the design of a universal vaccine. This study investigates the role of three surface-exposed variable regions in E2 glycoprotein folding and function in the context of a recombinant soluble ectodomain. Our data demonstrate the variable motifs modulate binding of the E2 ectodomain to the major host cell receptor CD81 and have an impact on the formation of an E2 homodimer with high-affinity binding to CD81.


Assuntos
Hepacivirus/fisiologia , Proteínas do Envelope Viral/química , Internalização do Vírus , Regulação Alostérica , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Linhagem Celular Tumoral , Epitopos/química , Epitopos/imunologia , Células HEK293 , Hepatócitos/virologia , Humanos , Cinética , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Tetraspanina 28/química , Proteínas do Envelope Viral/fisiologia
8.
Hepatology ; 65(4): 1117-1131, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27997681

RESUMO

A vaccine that prevents hepatitis C virus (HCV) infection is urgently needed to support an emerging global elimination program. However, vaccine development has been confounded because of HCV's high degree of antigenic variability and the preferential induction of type-specific immune responses with limited potency against heterologous viral strains and genotypes. We showed previously that deletion of the three variable regions from the E2 receptor-binding domain (Δ123) increases the ability of human broadly neutralizing antibodies (bNAbs) to inhibit E2-CD81 receptor interactions, suggesting improved bNAb epitope exposure. In this study, the immunogenicity of Δ123 was examined. We show that high-molecular-weight forms of Δ123 elicit distinct antibody specificities with potent and broad neutralizing activity against all seven HCV genotypes. Antibody competition studies revealed that immune sera raised to high-molecular-weight Δ123 was poly specific, given that it inhibited the binding of human bNAbs directed to three major neutralization epitopes on E2. By contrast, the immune sera raised to monomeric Δ123 predominantly blocked the binding of a non-neutralizing antibody to Δ123, while having reduced ability to block bNAb binding to E2, and neutralization was largely toward the homologous genotype. This increased ability of oligomeric Δ123 to generate bNAbs correlates with occlusion of the non-neutralizing face of E2 in this glycoprotein form. CONCLUSION: The results from this study reveal new information on the antigenic and immunogenic potential of E2-based immunogens and provide a pathway for the development of a simple, recombinant protein-based prophylactic vaccine for HCV with potential for universal protection. (Hepatology 2017;65:1117-1131).


Assuntos
Hepacivirus/genética , Hepatite C/genética , Proteínas do Envelope Viral/genética , Vacinas contra Hepatite Viral/farmacologia , Animais , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/genética , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Epitopos/genética , Genótipo , Cobaias , Hepacivirus/imunologia , Hepatite C/imunologia , Anticorpos Anti-Hepatite C/imunologia , Distribuição Aleatória , Estatísticas não Paramétricas , Proteínas do Envelope Viral/imunologia
9.
J Virol ; 89(24): 12245-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26378182

RESUMO

UNLABELLED: Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 form a heterodimer and mediate receptor interactions and viral fusion. Both E1 and E2 are targets of the neutralizing antibody (NAb) response and are candidates for the production of vaccines that generate humoral immunity. Previous studies demonstrated that N-terminal hypervariable region 1 (HVR1) can modulate the neutralization potential of monoclonal antibodies (MAbs), but no information is available on the influence of HVR2 or the intergenotypic variable region (igVR) on antigenicity. In this study, we examined how the variable regions influence the antigenicity of the receptor binding domain of E2 spanning HCV polyprotein residues 384 to 661 (E2661) using a panel of MAbs raised against E2661 and E2661 lacking HVR1, HVR2, and the igVR (Δ123) and well-characterized MAbs isolated from infected humans. We show for a subset of both neutralizing and nonneutralizing MAbs that all three variable regions decrease the ability of MAbs to bind E2661 and reduce the ability of MAbs to inhibit E2-CD81 interactions. In addition, we describe a new MAb directed toward the region spanning residues 411 to 428 of E2 (MAb24) that demonstrates broad neutralization against all 7 genotypes of HCV. The ability of MAb24 to inhibit E2-CD81 interactions is strongly influenced by the three variable regions. Our data suggest that HVR1, HVR2, and the igVR modulate exposure of epitopes on the core domain of E2 and their ability to prevent E2-CD81 interactions. These studies suggest that the function of HVR2 and the igVR is to modulate antibody recognition of glycoprotein E2 and may contribute to immune evasion. IMPORTANCE: This study reveals conformational and antigenic differences between the Δ123 and intact E2661 glycoproteins and provides new structural and functional data about the three variable regions and their role in occluding neutralizing and nonneutralizing epitopes on the E2 core domain. The variable regions may therefore function to reduce the ability of HCV to elicit NAbs directed toward the conserved core domain. Future studies aimed at generating a three-dimensional structure for intact E2 containing HVR1, and the adjoining NAb epitope at residues 412 to 428, together with HVR2, will reveal how the variable regions modulate antigenic structure.


Assuntos
Anticorpos Monoclonais Murinos/química , Anticorpos Neutralizantes/química , Hepacivirus/química , Anticorpos Anti-Hepatite C/química , Proteínas do Envelope Viral/química , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Hepacivirus/genética , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Tetraspanina 28/química , Tetraspanina 28/genética , Tetraspanina 28/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
10.
Biochem J ; 443(1): 85-94, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22240035

RESUMO

The protonation of histidine in acidic environments underpins its role in regulating the function of pH-sensitive proteins. For pH-sensitive viral fusion proteins, histidine protonation in the endosome leads to the activation of their membrane fusion function. The HCV (hepatitis C virus) glycoprotein E1-E2 heterodimer mediates membrane fusion within the endosome, but the roles of conserved histidine residues in the formation of a functional heterodimer and in sensing pH changes is unknown. We examined the functional roles of conserved histidine residues located within E1 and E2. The E1 mutations, H222A/R, H298R and H352A, disrupted E1-E2 heterodimerization and reduced virus entry. A total of five out of six histidine residues located within the E2 RBD (receptor-binding domain) were important for the E2 fold, and their substitution with arginine or alanine caused aberrant heterodimerization and/or CD81 binding. Distinct roles in E1-E2 heterodimerization and in virus entry were identified for His691 and His693 respectively within the membrane-proximal stem region. Viral entry and cell-cell fusion at neutral and low pH values were enhanced with H445R, indicating that the protonation state of His445 is a key regulator of HCV fusion. However, H445R did not overcome the block to virus entry induced by bafilomycin A1, indicating a requirement for an endosomal activation trigger in addition to acidic pH.


Assuntos
Hepacivirus/fisiologia , Tetraspanina 28/química , Proteínas do Envelope Viral/biossíntese , Internalização do Vírus , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência Conservada , Células HEK293 , Hepacivirus/patogenicidade , Histidina/genética , Humanos , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vírion
11.
J Virol ; 86(7): 3961-74, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22278231

RESUMO

Hepatitis C virus glycoprotein E2 contains 18 conserved cysteines predicted to form nine disulfide pairs. In this study, a comprehensive cysteine-alanine mutagenesis scan of all 18 cysteine residues was performed in E1E2-pseudotyped retroviruses (HCVpp) and recombinant E2 receptor-binding domain (E2 residues 384 to 661 [E2(661)]). All 18 cysteine residues were absolutely required for HCVpp entry competence. The phenotypes of individual cysteines and pairwise mutation of disulfides were largely the same for retrovirion-incorporated E2 and E2(661), suggesting their disulfide arrangements are similar. However, the contributions of each cysteine residue and the nine disulfides to E2 structure and function varied. Individual Cys-to-Ala mutations revealed discordant effects, where removal of one Cys within a pair had minimal effect on H53 recognition and CD81 binding (C486 and C569) while mutation of its partner abolished these functions (C494 and C564). Removal of disulfides at C581-C585 and C452-C459 significantly reduced the amount of E1 coprecipitated with E2, while all other disulfides were absolutely required for E1E2 heterodimerization. Remarkably, E2(661) tolerates the presence of four free cysteines, as simultaneous mutation of C452A, C486A, C569A, C581A, C585A, C597A, and C652A (M+C597A) retained wild-type CD81 binding. Thus, only one disulfide from each of the three predicted domains, C429-C552 (DI), C503-C508 (DII), and C607-C644 (DIII), is essential for the assembly of the E2(661) CD81-binding site. Furthermore, the yield of total monomeric E2 increased to 70% in M+C597A. These studies reveal the contribution of each cysteine residue and the nine disulfide pairs to E2 structure and function.


Assuntos
Sequência Conservada , Cisteína/química , Hepacivirus/fisiologia , Hepatite C/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Cisteína/genética , Cisteína/metabolismo , Hepacivirus/química , Hepacivirus/genética , Humanos , Dados de Sequência Molecular , Ligação Proteica , Dobramento de Proteína , Proteínas do Envelope Viral/genética , Internalização do Vírus
12.
J Biol Chem ; 286(37): 31984-92, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21768113

RESUMO

The HCV envelope glycoproteins E1 and E2 contain eight and 18 highly conserved cysteine residues, respectively. Here, we examined the oxidation state of E1E2 heterodimers incorporated into retroviral pseudotyped particles (HCVpp) and investigated the significance of free sulfhydryl groups in cell culture-derived HCV (HCVcc) and HCVpp entry. Alkylation of free sulfhydryl groups on HCVcc/pp with a membrane-impermeable sulfhydryl-alkylating reagent 4-(N-maleimido)benzyl-α-trimethylammonium iodide (M135) prior to virus attachment to cells abolished infectivity in a dose-dependent manner. Labeling of HCVpp envelope proteins with EZ-Link maleimide-PEG2-biotin (maleimide-biotin) detected free thiol groups in both E1 and E2. Unlike retroviruses that employ disulfide reduction to facilitate virus entry, the infectivity of alkylated HCVcc could not be rescued by addition of exogenous reducing agents. Furthermore, the infectivity of HCVcc bound to target cells was not affected by addition of M135 indicative of a change in glycoprotein oxidation state from reduced to oxidized following virus attachment to cells. By contrast, HCVpp entry was reduced by 61% when treated with M135 immediately following attachment to cells, suggesting that the two model systems might demonstrate variations in oxidation kinetics. Glycoprotein oxidation was not altered following binding of HCVpp incorporated E1E2 to soluble heparin or recombinant CD81. These results suggest that HCV entry is dependent on the presence of free thiol groups in E1 and E2 prior to cellular attachment and reveals a new essential component of the HCV entry process.


Assuntos
Cisteína/metabolismo , Hepacivirus/metabolismo , Multimerização Proteica/fisiologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Alquilantes/farmacologia , Alquilação/efeitos dos fármacos , Células HEK293 , Humanos , Oxirredução/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Proteínas Recombinantes/metabolismo , Tetraspanina 28/metabolismo
13.
J Gen Virol ; 92(Pt 1): 112-21, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20926639

RESUMO

The three variable regions of hepatitis C virus (HCV) glycoprotein E2 can be removed simultaneously from the E2 ectodomain (residues 384-661) without affecting folding or CD81 binding. In this study, we show that deletion of hypervariable region (HVR) 2 or the intergenotypic variable region (igVR) in the context of the E1E2 polyprotein eliminates formation of heterodimers, reduces CD81 binding and abolishes virus entry. The replication competence of genomic RNA transcribed from the JFH1 infectious HCV clone was not affected by the HVR1, HVR2 or igVR deletions in transfected Huh7.5 cells. However, infectivity of the resultant cell-culture-derived HCV (HCVcc) was abolished by HVR2 or igVR deletions, while deletion of HVR1 led to a 5- to 10-fold reduction in infectivity. Serial passage of cells transfected with genomes lacking HVR1 generated reverted viruses with wild-type levels of infectivity. Sequencing of viral cDNA obtained after full reversion revealed mutations in E1 (I262L) and E2 (N415D) that were present in 35 and 27 % of clones, respectively. Insertion of N415D into HVR1-deleted HCV genomes conferred wild-type levels of infectivity, while I262L increased infectivity by 2.5-fold. These results suggest that HVR2 and the igVR, but not HVR1, are essential for structural integrity and function of the HCV glycoprotein heterodimer.


Assuntos
Hepacivirus/fisiologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus , Internalização do Vírus , Antígenos CD/metabolismo , Linhagem Celular Tumoral , Análise Mutacional de DNA , Hepacivirus/metabolismo , Hepacivirus/patogenicidade , Hepatócitos/virologia , Humanos , Ligação Proteica , Multimerização Proteica , Deleção de Sequência , Inoculações Seriadas , Supressão Genética , Tetraspanina 28 , Vírion/metabolismo , Vírion/patogenicidade , Vírion/fisiologia , Virulência , Ligação Viral , Replicação Viral
14.
Antivir Ther ; 12(4): 477-87, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17668556

RESUMO

BACKGROUND: Virus-like particles (VLPs) are highly immunogenic and proven to induce protective immunity. The small surface antigen (HBsAg-S) of hepatitis B virus (HBV) self-assembles into VLPs and its use as a vaccine results in protective antiviral immunity against HBV infections. Chimeric HBsAg-S proteins carrying foreign epitopes allow particle formation and have the ability to induce anti-foreign humoral and cellular immune responses. METHODS/RESULTS: The insertion of the hypervariable region 1 (HVR1) sequence derived from the envelope protein 2 (E2) of hepatitis C virus (HCV) into the major antigenic site of HBsAg-S ('a'-determinant) resulted in the formation of highly immunogenic VLPs that retained the antigenicity of the inserted HVR1 sequence. BALB/c mice were immunized with chimeric VLPs, which resulted in antisera with anti-HCV activity. The antisera were able to immunoprecipitate native HCV envelope complexes (E1E2) containing homologous or heterologous HVR1 sequences. HCV E1E2 pseudotyped HIV-1 particles (HCVpp) were used to measure entry into HuH-7 target cells in the presence or absence of antisera that were raised against chimeric VLPs. Anti-HVR1 VLP sera interfered with entry of entry-competent HCVpps containing either homologous or heterologous HVR1 sequences. Also, immunizations with chimeric VLPs induced antisurface antigen (HBsAg) antibodies, indicating that HBV-specific antigenicity and immunogenicity of the 'a'-determinant region is retained. CONCLUSIONS: A multivalent vaccine against different pathogens based on the HBsAg delivery platform should be possible. We hypothesize that custom design of VLPs with an appropriate set of HCV-neutralizing epitopes will induce antibodies that would serve to decrease the viral load at the initial infecting inoculum.


Assuntos
Antígenos de Superfície da Hepatite B , Anticorpos Anti-Hepatite C/sangue , Proteínas Recombinantes de Fusão , Proteínas do Envelope Viral , Vacinas contra Hepatite Viral/administração & dosagem , Vírion , Sequência de Aminoácidos , Animais , Linhagem Celular , Hepacivirus/imunologia , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/metabolismo , Hepatite C/prevenção & controle , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Vacinas contra Hepatite Viral/imunologia , Vírion/genética , Vírion/imunologia , Vírion/metabolismo
15.
J Virol ; 81(17): 9584-90, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17581991

RESUMO

The hepatitis C virus glycoprotein E2 receptor-binding domain is encompassed by amino acids 384 to 661 (E2(661)) and contains two hypervariable sequences, HVR1 and HVR2. E2 sequence comparisons revealed a third variable region, located between residues 570 and 580, that varies widely between genotypes, designated here as igVR, the intergenotypic variable region. A secreted E2(661) glycoprotein with simultaneous deletions of the three variable sequences retained its ability to bind CD81 and conformation-dependent monoclonal antibodies (MAbs) and displayed enhanced binding to a neutralizing MAb directed to E2 immunogenic domain B. Our data provide insights into the E2 structure by suggesting that the three variable regions reside outside a conserved E2 core.


Assuntos
Antígenos CD/metabolismo , Hepacivirus/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Sítios de Ligação/genética , Humanos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Virais/metabolismo , Deleção de Sequência , Tetraspanina 28 , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
16.
J Clin Virol ; 39(4): 288-94, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17569577

RESUMO

BACKGROUND: The role of neutralizing antibody (NAb) in determining response to antiviral therapy has not been established. OBJECTIVE: In this study we have analysed the kinetic's of the NAb response in patients with chronic hepatitis C who received antiviral therapy. STUDY DESIGN: Seventeen patients infected with genotype 1, 2a/c or 3a hepatitis C virus (HCV) were enrolled, eight with a sustained virological response (SVR), five non-responders and four relapsers. RESULTS: The mean NAb titre required to neutralize 50% of the E1E2-pp in patients who achieved an SVR (294+/-S.D. 51), in relapsers (246+/-S.D. 61.7) and non-responders (286+/-S.D. 80.95) did not differ significantly between the patient groups and did not alter during the course of treatment (P>0.01). Genetic variation present before antiviral therapy was analysed by single strand conformation polymorphism (SSCP) and failed to demonstrate a significant difference in the mean number of amplified E1E2 DNA fragments from the serum of patients who achieved an SVR (3.15+/-S.D. 1.53), relapsers (2.8+/-S.D. 1.32) or non-responders (3.69+/-S.D. 1.75). The baseline serum HCV viral loads were also not significantly different between patients who achieved an SVR (1.4 x 10(6) copies/ml; +/-S.D. 2.4 x 10(6)), relapsers (1.3 x 10(7) copies/ml; +/-S.D. 2.4 x 10(7)) and non-responders (1.5 x 10(6) copies/ml; +/-S.D. 1.1 x 10(6)). CONCLUSION: We have shown that neutralizing anti-HCVpp antibody is not associated with response to antiviral therapy. In addition, there was no correlation between baseline virological load, circulating viral quasi-species, NAb titres and final response to treatment.


Assuntos
Antivirais/uso terapêutico , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/imunologia , Quimioterapia Combinada , Hepacivirus/classificação , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Anticorpos Anti-Hepatite C/sangue , Hepatite C Crônica/virologia , Humanos , Interferons/uso terapêutico , Testes de Neutralização , Polietilenoglicóis/uso terapêutico , Polimorfismo Conformacional de Fita Simples , Ribavirina/uso terapêutico , Proteínas do Envelope Viral/imunologia
17.
Hepatology ; 45(4): 911-20, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17393515

RESUMO

UNLABELLED: We describe a peptide-based strategy for HCV vaccine design that addresses the problem of variability in hypervariable region 1 (HVR1). Peptides representing antibody epitopes of HVR1 from genotype 1a were synthesized and incorporated into multideterminant immunogens that also included lipid moieties and helper T (T(h)) cell epitopes. Mice inoculated with these polyepitopes generated strong antibody responses. Antibody titers were highest in mice inoculated with polyepitope immunogens which contained the lipid moiety dipalmitoyl-S-glyceryl cysteine (Pam2Cys). Antisera were tested for their potential to neutralize HCV by 3 currently available assays. Antibodies elicited in mice by the polyepitope-based vaccine candidates were able to (1) bind to E2 expressed on the surface of E1/E2-transfected human embryonic kidney (HEK) 293T cells, (2) capture HCV of different genotypes (1, 2, and 3) from the serum of chronically infected humans in an immune capture RT-PCR assay and (3) inhibit HCVpp entry into Huh7 cells. Antibody present in the sera of patients chronically infected with HCV genotypes 1, 2, 3, and 4 also bound to the HVR1-based polyepitope. CONCLUSION: These results demonstrate the potential of self-adjuvanting epitope-based constructs in the development and delivery of cross-reactive immunogens that incorporate potential neutralizing epitopes present within the viral envelope of HCV.


Assuntos
Anticorpos Antivirais , Hepatite C/imunologia , Vacinas Sintéticas , Proteínas do Envelope Viral/imunologia , Animais , Linhagem Celular , Epitopos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos , Soro/imunologia , Proteínas Virais/imunologia
18.
J Gen Virol ; 88(Pt 4): 1144-1148, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17374757

RESUMO

The E1E2 glycoprotein heterodimer of Hepatitis C virus mediates viral entry. E2 attaches the virus to cellular receptors; however, the function of E1 is unknown. We tested the hypothesis that E1 is a truncated class II fusion protein. We mutated amino acids within a predicted fusion peptide (residues 276-286) and a truncated C-terminal stem-like motif, containing a membrane-proximal heptad-repeat sequence (residues 330-347). The fusion peptide mutation F285A abolished viral entry, while mutation of other hydrophobic residues had no effect. Alanine replacement of heptad-repeat residues blocked entry in three of five cases, whereas substitution with the helix breaker, Pro, led to loss of entry function in all cases. The mutations did not affect glycoprotein expression, heterodimerization with E2 or global folding, in contrast to the effects of mutations in the fusion motifs of prototypical class II fusion proteins. Our data suggest that E1 is unlikely to function in an analogous manner to other class II fusion glycoproteins.


Assuntos
Motivos de Aminoácidos , Substituição de Aminoácidos , Hepacivirus/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Internalização do Vírus , Sequência de Aminoácidos , Dimerização , Expressão Gênica , Hepacivirus/fisiologia , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Dobramento de Proteína , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/fisiologia
19.
J Virol ; 80(16): 7844-53, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16873241

RESUMO

The hepatitis C virus (HCV) glycoproteins E1 and E2 form a heterodimer that mediates CD81 receptor binding and viral entry. In this study, we used site-directed mutagenesis to examine the functional role of a conserved G436WLAGLFY motif of E2. The mutants could be placed into two groups based on the ability of mature virion-incorporated E1E2 to bind the large extracellular loop (LEL) of CD81 versus the ability to mediate cellular entry of pseudotyped retroviral particles. Group 1 comprised E2 mutants where LEL binding ability largely correlated with viral entry ability, with conservative and nonconservative substitutions (W437 L/A, L438A, L441V/F, and F442A) inhibiting both functions. These data suggest that Trp-437, Leu-438, Leu-441, and Phe-442 directly interact with the LEL. Group 2 comprised E2 glycoproteins with more conservative substitutions that lacked LEL binding but retained between 20% and 60% of wild-type viral entry competence. The viral entry competence displayed by group 2 mutants was explained by residual binding by the E2 receptor binding domain to cellular full-length CD81. A subset of mutants maintained LEL binding ability in the context of intracellular E1E2 forms, but this function was largely lost in virion-incorporated glycoproteins. These data suggest that the CD81 binding site undergoes a conformational transition during glycoprotein maturation through the secretory pathway. The G436P mutant was an outlier, retaining near-wild-type levels of CD81 binding but lacking significant viral entry ability. These findings indicate that the G436WLAGLFY motif of E2 functions in CD81 binding and in pre- or post-CD81-dependent stages of viral entry.


Assuntos
Antígenos CD/metabolismo , Hepacivirus/fisiologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência Conservada , Dimerização , Hepacivirus/metabolismo , Dados de Sequência Molecular , Mutagênese , Mutação , Conformação Proteica , Tetraspanina 28 , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA