Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Med Phys ; 51(2): 712-739, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018710

RESUMO

Currently, there are multiple breast dosimetry estimation methods for mammography and its variants in use throughout the world. This fact alone introduces uncertainty, since it is often impossible to distinguish which model is internally used by a specific imaging system. In addition, all current models are hampered by various limitations, in terms of overly simplified models of the breast and its composition, as well as simplistic models of the imaging system. Many of these simplifications were necessary, for the most part, due to the need to limit the computational cost of obtaining the required dose conversion coefficients decades ago, when these models were first implemented. With the advancements in computational power, and to address most of the known limitations of previous breast dosimetry methods, a new breast dosimetry method, based on new breast models, has been developed, implemented, and tested. This model, developed jointly by the American Association of Physicists in Medicine and the European Federation for Organizations of Medical Physics, is applicable to standard mammography, digital breast tomosynthesis, and their contrast-enhanced variants. In addition, it includes models of the breast in both the cranio-caudal and the medio-lateral oblique views. Special emphasis was placed on the breast and system models used being based on evidence, either by analysis of large sets of patient data or by performing measurements on imaging devices from a range of manufacturers. Due to the vast number of dose conversion coefficients resulting from the developed model, and the relative complexity of the calculations needed to apply it, a software program has been made available for download or online use, free of charge, to apply the developed breast dosimetry method. The program is available for download or it can be used directly online. A separate User's Guide is provided with the software.


Assuntos
Neoplasias da Mama , Mama , Humanos , Feminino , Mama/diagnóstico por imagem , Mamografia/métodos , Radiometria/métodos , Método de Monte Carlo , Neoplasias da Mama/diagnóstico por imagem
2.
Med Phys ; 51(2): 933-945, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154070

RESUMO

BACKGROUND: Breast computed tomography (CT) is an emerging breast imaging modality, and ongoing developments aim to improve breast CT's ability to detect microcalcifications. To understand the effects of different parameters on microcalcification detectability, a virtual clinical trial study was conducted using hybrid images and convolutional neural network (CNN)-based model observers. Mathematically generated microcalcifications were embedded into breast CT data sets acquired at our institution, and parameters related to calcification size, calcification contrast, cluster diameter, cluster density, and image display method (i.e., single slices, slice averaging, and maximum-intensity projections) were evaluated for their influence on microcalcification detectability. PURPOSE: To investigate the individual effects and the interplay of parameters affecting microcalcification detectability in breast CT. METHODS: Spherical microcalcifications of varying diameters (0.04, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 mm) and native intensities were computer simulated to portray the partial volume effects of the imaging system. Calcifications were mathematically embedded into 109 patient breast CT volume data sets as individual calcifications or as clusters of calcifications. Six numbers of calcifications (1, 3, 5, 7, 10, 15) distributed within six cluster diameters (1, 3, 5, 6, 8, 10 mm) were simulated to study the effect of cluster density. To study the role of image display method, 2D regions of interest (ROIs) and 3D volumes of interest (VOIs) were generated using single slice extraction, slice averaging, and maximum-intensity projection (MIP). 2D and 3D CNNs were trained on the ROIs and VOIs, and receiver operating characteristic (ROC) curve analysis was used to evaluate detection performance. The area under the ROC curve (AUC) was used as the primary performance metric. RESULTS: Detection performance decreased with increasing section thickness, and peak detection performance occurred using the native section thickness (0.2 mm) and MIP display. The MIP display method, despite using a single slice, yielded comparable performance to the native section thickness, which employed 50 slices. Reduction in slices did not sacrifice detection accuracy and provided significant computational advantages over multi-slice image volumes. Larger cluster diameters resulted in reduced overall detectability, while smaller cluster diameters led to increased detectability. Additionally, we observed that the presence of more calcifications within a cluster improved the overall detectability, while fewer calcifications decreased it. CONCLUSIONS: As breast CT is still a relatively new breast imaging modality, there is an ongoing need to identify optimal imaging protocols. This work demonstrated the utility of MIP presentation for displaying image volumes containing microcalcification clusters. It is likely that human observers may also benefit from viewing MIPs compared to individual slices. The results of this investigation begin to elucidate how model observers interact with microcalcification clusters in a 3D volume, and will be useful for future studies investigating a broader set of parameters related to breast CT.


Assuntos
Doenças Mamárias , Calcinose , Humanos , Mamografia/métodos , Tomografia Computadorizada por Raios X/métodos , Calcinose/diagnóstico por imagem , Redes Neurais de Computação
3.
Med Phys ; 50(11): 6748-6761, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37639329

RESUMO

BACKGROUND: The use of iodine-based contrast agent for better delineation of tumors in breast CT (bCT) has been shown to be compelling, similar to the tumor enhancement in contrast-enhanced breast MRI. Contrast-enhanced bCT (CE-bCT) is a relatively new tool, and a structured evaluation of different imaging parameters at play has yet to be conducted. In this investigation, data sets of acquired bCT images from 253 patients imaged at our institution were used in concert with simulated mathematically inserted spherical contrast-enhanced lesions to study the role of contrast enhancement on detectability. PURPOSE: To quantitatively evaluate the improvement in lesion detectability due to contrast enhancement across lesion diameter, section thickness, view plane, and breast density using a pre-whitened matched filter (PWMF) model observer. METHODS: The relationship between iodine concentration and Hounsfield units (HU) was measured using spectral modeling. The lesion enhancement from clinical CE-bCT images in 22 patients was evaluated, and the average contrast enhancement (ΔHU) was determined. Mathematically generated spherical mass lesions of varying diameters (1, 3, 5, 9, 11, 15 mm) and contrast enhancement levels (0, 0.25, 0.50, 0.75, 1) were inserted at random locations in 253 actual patient bCT datasets. Images with varying thicknesses (0.4-19.8 mm) were generated by slice averaging, and the role of view plane (coronal and axial planes) was studied. A PWMF was used to generate receiver operating characteristic (ROC) curves across parameters of lesion diameter, contrast enhancement, section thickness, view plane, and breast density. The area under the ROC curve (AUC) was used as the primary performance metric, generated from over 90,000 simulated lesions. RESULTS: An average 20% improvement (ΔAUC = 0.1) in lesion detectability due to contrast enhancement was observed across lesion diameter, section thickness, breast density, and view plane. A larger improvement was observed when stratifying patients based on breast density. For patients with VGF ≤ 40%, detection performance improved up to 20% (until AUC →1), and for patients with denser breasts (VGF > 40%), detection performance improved more drastically, ranging from 20% to 80% for 1- and 5-mm lesions. For the 1 mm lesion, detection performance raised slightly at the 1.2 mm section thickness before falling off as thickness increased. For larger lesions, detection performance was generally unaffected as section thickness increased up until it reached 5.8 mm, where performance began to decline. Detection performance was higher in the axial plane compared to the coronal plane for smaller lesions and thicker sections. CONCLUSIONS: For emerging diagnostic tools like CE-bCT, it is important to optimize imaging protocols for lesion detection. In this study, we found that intravenous contrast can be used to detect small lesions in dense breasts. Optimal section thickness for detectability has dependencies on breast density and lesion size, therefore, display thickness should be adjusted in real-time using display software. These findings may be useful for the development of CE-bCT as well as other x-ray-based breast imaging modalities.


Assuntos
Iodo , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Mama/diagnóstico por imagem , Mama/patologia , Imageamento Tridimensional/métodos , Mamografia/métodos , Imagens de Fantasmas
4.
Med Phys ; 50(7): 4151-4172, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37057360

RESUMO

BACKGROUND: This study reports the results of a set of discrimination experiments using simulated images that represent the appearance of subtle lesions in low-dose computed tomography (CT) of the lungs. Noise in these images has a characteristic ramp-spectrum before apodization by noise control filters. We consider three specific diagnostic features that determine whether a lesion is considered malignant or benign, two system-resolution levels, and four apodization levels for a total of 24 experimental conditions. PURPOSE: The goal of the investigation is to better understand how well human observers perform subtle discrimination tasks like these, and the mechanisms of that performance. We use a forced-choice psychophysical paradigm to estimate observer efficiency and classification images. These measures quantify how effectively subjects can read the images, and how they use images to perform discrimination tasks across the different imaging conditions. MATERIALS AND METHODS: The simulated CT images used as stimuli in the psychophysical experiments are generated from high-resolution objects passed through a modulation transfer function (MTF) before down-sampling to the image-pixel grid. Acquisition noise is then added with a ramp noise-power spectrum (NPS), with subsequent smoothing through apodization filters. The features considered are lesion size, indistinct lesion boundary, and a nonuniform lesion interior. System resolution is implemented by an MTF with resolution (10% max.) of 0.47 or 0.58 cyc/mm. Apodization is implemented by a Shepp-Logan filter (Sinc profile) with various cutoffs. Six medically naïve subjects participated in the psychophysical studies, entailing training and testing components for each condition. Training consisted of staircase procedures to find the 80% correct threshold for each subject, and testing involved 2000 psychophysical trials at the threshold value for each subject. Human-observer performance is compared to the Ideal Observer to generate estimates of task efficiency. The significance of imaging factors is assessed using ANOVA. Classification images are used to estimate the linear template weights used by subjects to perform these tasks. Classification-image spectra are used to analyze subject weights in the spatial-frequency domain. RESULTS: Overall, average observer efficiency is relatively low in these experiments (10%-40%) relative to detection and localization studies reported previously. We find significant effects for feature type and apodization level on observer efficiency. Somewhat surprisingly, system resolution is not a significant factor. Efficiency effects of the different features appear to be well explained by the profile of the linear templates in the classification images. Increasingly strong apodization is found to both increase the classification-image weights and to increase the mean-frequency of the classification-image spectra. A secondary analysis of "Unapodized" classification images shows that this is largely due to observers undoing (inverting) the effects of apodization filters. CONCLUSIONS: These studies demonstrate that human observers can be relatively inefficient at feature-discrimination tasks in ramp-spectrum noise. Observers appear to be adapting to frequency suppression implemented in apodization filters, but there are residual effects that are not explained by spatial weighting patterns. The studies also suggest that the mechanisms for improving performance through the application of noise-control filters may require further investigation.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Algoritmos
5.
J Neurol Surg B Skull Base ; 83(5): 470-475, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36091630

RESUMO

Objective Super-high and ultra-high spatial resolution computed tomography (CT) imaging can be advantageous for detecting temporal bone pathology and guiding treatment strategies. Methods Six temporal bone cadaveric specimens were used to evaluate the temporal bone microanatomic structures utilizing the following CT reconstruction modes: normal resolution (NR, 0.5-mm slice thickness, 512 2 matrix), high resolution (HR, 0.5-mm slice thickness, 1,024 2 matrix), super-high resolution (SHR, 0.25-mm slice thickness, 1,024 2 matrix), and ultra-high resolution (UHR, 0.25-mm slice thickness, 2,048 2 matrix). Noise and signal-to-noise ratio (SNR) for bone and air were measured at each reconstruction mode. Two observers assessed visualization of seven small anatomic structures using a 4-point scale at each reconstruction mode. Results Noise was significantly higher and SNR significantly lower with increases in spatial resolution (NR, HR, and SHR). There was no statistical difference between SHR and UHR imaging with regard to noise and SNR. There was significantly improved visibility of all temporal bone osseous structures of interest with SHR and UHR imaging relative to NR imaging ( p < 0.001) and most of the temporal bone osseous structures relative to HR imaging. There was no statistical difference in the subjective image quality between SHR and UHR imaging of the temporal bone ( p ≥ 0.085). Conclusion Super-high-resolution and ultra-high-resolution CT imaging results in significant improvement in image quality compared with normal-resolution and high-resolution CT imaging of the temporal bone. This preliminary study also demonstrates equivalency between super-high and ultra-high spatial resolution temporal bone CT imaging protocols for clinical use.

6.
Med Phys ; 49(8): 5423-5438, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35635844

RESUMO

BACKGROUND: Understanding the magnitude and variability of the radiation dose absorbed by the breast fibroglandular tissue during mammography and digital breast tomosynthesis (DBT) is of paramount importance to assess risks versus benefits. Although homogeneous breast models have been proposed and used for decades for this purpose, they do not accurately reflect the actual heterogeneous distribution of the fibroglandular tissue in the breast, leading to biases in the estimation of dose from these modalities. PURPOSE: To develop and validate a method to generate patient-derived, heterogeneous digital breast phantoms for breast dosimetry in mammography and DBT. METHODS: The proposed phantoms were developed starting from patient-based models of compressed breasts, generated for multiple thicknesses and representing the two standard views acquired in mammography and DBT, that is, cranio-caudal (CC) and medio-lateral-oblique (MLO). Internally, the breast phantoms were defined as consisting of an adipose/fibroglandular tissue mixture, with a nonspatially uniform relative concentration. The parenchyma distributions were obtained from a previously described model based on patient breast computed tomography data that underwent simulated compression. Following these distributions, phantoms with any glandular fraction (1%-100%) and breast thickness (12-125 mm) can be generated, for both views. The phantoms were validated, in terms of their accuracy for average normalized glandular dose (Dg N) estimation across samples of patient breasts, using 88 patient-specific phantoms involving actual patient distribution of the fibroglandular tissue in the breast, and compared to that obtained using a homogeneous model similar to those currently used for breast dosimetry. RESULTS: The average Dg N estimated for the proposed phantoms was concordant with that absorbed by the patient-specific phantoms to within 5% (CC) and 4% (MLO). These Dg N estimates were over 30% lower than those estimated with the homogeneous models, which overestimated the average Dg N by 43% (CC), and 32% (MLO) compared to the patient-specific phantoms. CONCLUSIONS: The developed phantoms can be used for dosimetry simulations to improve the accuracy of dose estimates in mammography and DBT.


Assuntos
Neoplasias da Mama , Mamografia , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Mamografia/métodos , Imagens de Fantasmas , Radiometria/métodos , Tomografia Computadorizada por Raios X/métodos
7.
Phys Med ; 97: 50-58, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35395535

RESUMO

PURPOSE: To evaluate the bias to the mean glandular dose (MGD) estimates introduced by the homogeneous breast models in digital breast tomosynthesis (DBT) and to have an insight into the glandular dose distributions in 2D (digital mammography, DM) and 3D (DBT and breast dedicated CT, BCT) x-ray breast imaging by employing breast models with realistic glandular tissue distribution and organ silhouette. METHODS: A Monte Carlo software for DM, DBT and BCT simulations was adopted for the evaluation of glandular dose distribution in 60 computational anthropomorphic phantoms. These computational phantoms were derived from 3D breast images acquired via a clinical BCT scanner. RESULTS: g·c·s·T conversion coefficients based on homogeneous breast model led to a MGD overestimate of 18% in DBT when compared to MGD estimated via anthropomorphic phantoms; this overestimate increased up to 21% for recently computed DgNDBT conversion coefficients. The standard deviation of the glandular dose distribution in BCT resulted 60% lower than in DM and 55% lower than in DBT. The glandular dose peak - evaluated as the average value over the 5% of the gland receiving the highest dose - is 2.8 times the MGD in DM, this factor reducing to 2.6 and 1.6 in DBT and BCT, respectively. CONCLUSIONS: Conventional conversion coefficients for MGD estimates based on homogeneous breast models overestimate MGD by 18%, when compared to MGD estimated via anthropomorphic phantoms. The ratio between the peak glandular dose and the MGD is 2.8 in DM. This ratio is 8% and 75% higher than in DBT and BCT, respectively.


Assuntos
Neoplasias da Mama , Mamografia , Mama/diagnóstico por imagem , Feminino , Humanos , Mamografia/métodos , Método de Monte Carlo , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos
8.
J Feline Med Surg ; 24(10): 975-985, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34842477

RESUMO

OBJECTIVES: This study used computer simulation modeling to estimate and compare costs of different free-roaming cat (FRC) management options (lethal and non-lethal removal, trap-neuter-return, combinations of these options and no action) and their ability to reduce FRC population abundance in open demographic settings. The findings provide a resource for selecting management approaches that are well matched for specific communities, goals and timelines, and they represent use of best available science to address FRC issues. METHODS: Multiple FRC management approaches were simulated at varying intensities using a stochastic individual-based model in the software package Vortex. Itemized costs were obtained from published literature and expert feedback. Metrics generated to evaluate and compare management scenarios included final population size, total cost and a cost efficiency index, which was the ratio between total cost and population size reduction. RESULTS: Simulations suggested that cost-effective reduction of FRC numbers required sufficient management intensity, regardless of management approach, and greatly improved when cat abandonment was minimized. Removal yielded the fastest initial reduction in cat abundance, but trap-neuter-return was a viable and potentially more cost-effective approach if performed at higher intensities over a sufficient duration. Of five management scenarios that reduced the final population size by approximately 45%, the three scenarios that relied exclusively on removal were considerably more expensive than the two scenarios that relied exclusively or primarily on sterilization. CONCLUSIONS AND RELEVANCE: FRCs present a challenge in many municipalities, and stakeholders representing different perspectives may promote varying and sometimes incompatible population management policies and strategies. Although scientific research is often used to identify FRC impacts, its use to identify viable, cost-effective management solutions has been inadequate. The data provided by simulating different interventions, combined with community-specific goals, priorities and ethics, provide a framework for better-informed FRC policy and management outcomes.


Assuntos
Controle da População , Esterilização Reprodutiva , Animais , Gatos , Simulação por Computador , Densidade Demográfica , Dinâmica Populacional , Esterilização Reprodutiva/veterinária
9.
Front Vet Sci ; 8: 791134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970620

RESUMO

Over the last several decades, feral cats have moved from the fringes to the mainstream in animal welfare and sheltering. Although many best practice guidelines have been published by national non-profits and veterinary bodies, little is known about how groups "in the trenches" actually operate. Our study sought to address that gap through an online survey of feral cat care and advocacy organizations based in the United States. Advertised as "The State of the Mewnion," its topics included a range of issues spanning non-profit administration, public health, caretaking and trapping, adoptions of friendly kittens and cats, veterinary medical procedures and policies, data collection and program efficacy metrics, research engagement and interest, and relationships with wildlife advocates and animal control agencies. Respondents from 567 organizations participated, making this the largest and most comprehensive study on this topic to date. Respondents came primarily from grassroots organizations. A majority reported no paid employees (74.6%), served 499 or fewer feral cats per year (75.0%), engaged between 1 and 9 active volunteers (54.9%), and did not operate a brick and mortar facility (63.7%). Some of our findings demonstrate a shared community of practice, including the common use of a minimum weight of 2.0 pounds for spay/neuter eligibility, left side ear tip removals to indicate sterilization, recovery holding times after surgery commonly reported as 1 night for male cats and 1 or 2 nights for females, requiring or recommending to adopters of socialized kittens/cats that they be kept indoor-only, and less than a quarter still engaging in routine testing of cats for FIV and FeLV. Our survey also reveals areas for improvement, such as most organizations lacking a declared goal with a measurable value and a time frame, only sometimes scanning cats for microchips, and about a third not using a standardized injection site for vaccines. This study paints the clearest picture yet available of what constitutes the standard practices of organizations serving feral and community cats in the United States.

11.
J Med Imaging (Bellingham) ; 8(5): 052107, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34307737

RESUMO

Purpose: To demonstrate the utility of high-resolution micro-computed tomography ( µ CT ) for determining ground-truth size and shape properties of calcium grains for evaluation of detection performance in breast CT (bCT). Approach: Calcium carbonate grains ( ∼ 200 µ m ) were suspended in 1% agar solution to emulate microcalcifications ( µ Calcs ) within a fibroglandular tissue background. Ground-truth imaging was performed on a commercial µ CT scanner and was used for assessing calcium-grain size and shape, and for generating µ Calc signal profiles. Calcium grains were placed within a realistic breast-shaped phantom and imaged on a prototype bCT system at 3- and 6-mGy mean glandular dose (MGD) levels, and the non-prewhitening detectability was assessed. Additionally, the µ CT -derived signal profiles were used in conjunction with the bCT system characterization (MTF and NPS) to obtain predictions of bCT detectability. Results: Estimated detectability of the calcium grains on the bCT system ranged from 2.5 to 10.6 for 3 mGy and from 3.8 to 15.3 for 6 mGy with large fractions of the grains meeting the Rose criterion for visibility. Segmentation of µ CT images based on morphological operations produced accurate results in terms of segmentation boundaries and segmented region size. A regression model linking bCT detectability to µ Calc parameters indicated significant effects of µ Calc size and vertical position within the breast phantom. Detectability using µ CT -derived detection templates and bCT statistical properties (MTF and NPS) were in good correspondence with those measured directly from bCT ( R 2 > 0.88 ). Conclusions: Parameters derived from µ CT ground-truth data were shown to produce useful characterizations of detectability when compared to estimates derived directly from bCT. Signal profiles derived from µ CT imaging can be used in conjunction with measured or hypothesized statistical properties to evaluate the performance of a system, or system component, that may not currently be available.

12.
J Med Imaging (Bellingham) ; 8(2): 024501, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33796604

RESUMO

Purpose: A computer-aided diagnosis (CADx) system for breast masses is proposed, which incorporates both handcrafted and convolutional radiomic features embedded into a single deep learning model. Approach: The model combines handcrafted and convolutional radiomic signatures into a multi-view architecture, which retrieves three-dimensional (3D) image information by simultaneously processing multiple two-dimensional mass patches extracted along different planes through the 3D mass volume. Each patch is processed by a stream composed of two concatenated parallel branches: a multi-layer perceptron fed with automatically extracted handcrafted radiomic features, and a convolutional neural network, for which discriminant features are learned from the input patches. All streams are then concatenated together into a final architecture, where all network weights are shared and the learning occurs simultaneously for each stream and branch. The CADx system was developed and tested for diagnosis of breast masses ( N = 284 ) using image datasets acquired with independent dedicated breast computed tomography systems from two different institutions. The diagnostic classification performance of the CADx system was compared against other machine and deep learning architectures adopting handcrafted and convolutional approaches, and three board-certified breast radiologists. Results: On a test set of 82 masses (45 benign, 37 malignant), the proposed CADx system performed better than all other model architectures evaluated, with an increase in the area under the receiver operating characteristics curve (AUC) of 0.05 ± 0.02 , and achieving a final AUC of 0.947, outperforming the three radiologists ( AUC = 0.814 - 0.902 ). Conclusions: In conclusion, the system demonstrated its potential usefulness in breast cancer diagnosis by improving mass malignancy assessment.

13.
Med Phys ; 48(5): 2682-2693, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33683711

RESUMO

PURPOSE: To present a dataset of computational digital breast phantoms derived from high-resolution three-dimensional (3D) clinical breast images for the use in virtual clinical trials in two-dimensional (2D) and 3D x-ray breast imaging. ACQUISITION AND VALIDATION METHODS: Uncompressed computational breast phantoms for investigations in dedicated breast CT (BCT) were derived from 150 clinical 3D breast images acquired via a BCT scanner at UC Davis (California, USA). Each image voxel was classified in one out of the four main materials presented in the field of view: fibroglandular tissue, adipose tissue, skin tissue, and air. For the image classification, a semi-automatic software was developed. The semi-automatic classification was compared via manual glandular classification performed by two researchers. A total of 60 compressed computational phantoms for virtual clinical trials in digital mammography (DM) and digital breast tomosynthesis (DBT) were obtained from the corresponding uncompressed phantoms via a software algorithm simulating the compression and the elastic deformation of the breast, using the tissue's elastic coefficient. This process was evaluated in terms of glandular fraction modification introduced by the compression procedure. The generated cohort of 150 uncompressed computational breast phantoms presented a mean value of the glandular fraction by mass of 12.3%; the average diameter of the breast evaluated at the center of mass was 105 mm. Despite the slight differences between the two manual segmentations, the resulting glandular tissue segmentation did not consistently differ from that obtained via the semi-automatic classification. The difference between the glandular fraction by mass before and after the compression was 2.1% on average. The 60 compressed phantoms presented an average glandular fraction by mass of 12.1% and an average compressed thickness of 61 mm. DATA FORMAT AND ACCESS: The generated digital breast phantoms are stored in DICOM files. Image voxels can present one out of four values representing the different classified materials: 0 for the air, 1 for the adipose tissue, 2 for the glandular tissue, and 3 for the skin tissue. The generated computational phantoms datasets were stored in the Zenodo public repository for research purposes (http://doi.org/10.5281/zenodo.4529852, http://doi.org/10.5281/zenodo.4515360). POTENTIAL APPLICATIONS: The dataset developed within the INFN AGATA project will be used for developing a platform for virtual clinical trials in x-ray breast imaging and dosimetry. In addition, they will represent a valid support for introducing new breast models for dose estimates in 2D and 3D x-ray breast imaging and as models for manufacturing anthropomorphic physical phantoms.


Assuntos
Mama , Mamografia , Mama/diagnóstico por imagem , Simulação por Computador , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
14.
Med Phys ; 48(3): 1436-1447, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33452822

RESUMO

PURPOSE: To develop a patient-based breast density model by characterizing the fibroglandular tissue distribution in patient breasts during compression for mammography and digital breast tomosynthesis (DBT) imaging. METHODS: In this prospective study, 88 breast images were acquired using a dedicated breast computed tomography (CT) system. The breasts in the images were classified into their three main tissue components and mechanically compressed to mimic the positioning for mammographic acquisition of the craniocaudal (CC) and mediolateral oblique (MLO) views. The resulting fibroglandular tissue distribution during these compressions was characterized by dividing the compressed breast volume into small regions, for which the median and the 25th and 75th percentile values of local fibroglandular density were obtained in the axial, coronal, and sagittal directions. The best fitting function, based on the likelihood method, for the median distribution was obtained in each direction. RESULTS: The fibroglandular tissue tends to concentrate toward the caudal (about 15% below the midline of the breast) and anterior regions of the breast, in both the CC- and MLO-view compressions. A symmetrical distribution was found in the MLO direction in the case of the CC-view compression, while a shift of about 12% toward the lateral direction was found in the MLO-view case. CONCLUSIONS: The location of the fibroglandular tissue in the breast under compression during mammography and DBT image acquisition is a major factor for determining the actual glandular dose imparted during these examinations. A more realistic model of the parenchyma in the compressed breast, based on patient image data, was developed. This improved model more accurately reflects the fibroglandular tissue spatial distribution that can be found in patient breasts, and therefore might aid in future studies involving radiation dose and/or cancer development risk estimation.


Assuntos
Neoplasias da Mama , Mamografia , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Humanos , Estudos Prospectivos , Distribuição Tecidual , Tomografia Computadorizada por Raios X
15.
Med Phys ; 48(1): 313-328, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33232521

RESUMO

PURPOSE: To develop and evaluate the diagnostic performance of an algorithm for multi-marker radiomic-based classification of breast masses in dedicated breast computed tomography (bCT) images. METHODS: Over 1000 radiomic descriptors aimed at quantifying mass and border heterogeneity, morphology, and margin sharpness were developed and implemented. These included well-established texture and shape feature descriptors, which were supplemented with additional approaches for contour irregularity quantification, spicule and lobe detection, characterization of degree of infiltration, and differences in peritumoral compartments. All descriptors were extracted from a training set of 202 bCT masses (133 benign and 69 malignant), and their individual diagnostic performance was investigated in terms of area under the receiver operating characteristics (ROC) curve (AUC) of single-feature-based linear discriminant analysis (LDA) classifiers. Subsequently, the most relevant descriptors were selected through a multiple-step feature selection process (including stability analysis, statistical significance, evaluation of feature interaction, and dimensionality reduction), and used to develop a final LDA radiomic model for classification of benign and malignant masses, which was then tested on an independent test set of 82 cases (45 benign and 37 malignant). RESULTS: The majority of the individual radiomic descriptors showed, on the training set, an AUC value deriving from a linear decision boundary higher than 0.65, with the lower limit of the associated 95% confidence interval (C.I.) not overlapping with random chance (AUC = 0.5). The final LDA radiomic model resulted in a test set AUC of 0.90 (95% C.I. 0.80-0.96). CONCLUSIONS: The proposed multi-marker radiomic approach achieved high diagnostic accuracy in bCT mass classification, using a radiomic signature based on different feature types. While future studies with larger datasets are needed to further validate these results, quantitative radiomics applied to bCT shows potential to improve the breast cancer diagnosis pipeline.


Assuntos
Neoplasias da Mama , Mama , Algoritmos , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Humanos , Curva ROC , Tomografia Computadorizada por Raios X
16.
Phys Med Biol ; 65(23): 235033, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080575

RESUMO

The design and testing of a prototype Multi-X-ray-source Array (MXA) for digital breast tomosynthesis is reported. The MXA is comprised of an array of tungsten filament cathodes with focus cup grid-controlled modulation and a common rotating anode housed in a single vacuum envelope. Prototypes consisting of arrays of three-source elements and eleven-source-elements were fabricated and evaluated. The prototype sources demonstrated focal spot sizes of 0.3 mm at 45 kV with 50 mA. Measured x-ray spectra were consistent with the molybdenum anode employed, and the tube output (air kerma) was between 0.6 mGy/100 mAs at 20 kV and 17 mGy/100 mAs at 45 kV with a distance of 100 cm. HVL measurements ranged from 0.5 mm Al at 30 kV to 0.8 mm Al at 45 kV, and x-ray pulse widths were varied from 20 ms to 110 ms at operating frequencies ultimately to be limited by source turn-on/off times of ∼1 ms. Initial results of reconstructed tomographic data are presented.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia/instrumentação , Mamografia/métodos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Feminino , Humanos
18.
Artigo em Inglês | MEDLINE | ID: mdl-33384464

RESUMO

This study introduces a methodology for generating high resolution signal profiles of microcalcification (MC) grains for validating breast CT (bCT) systems. A physical MC phantom was constructed by suspending calcium carbonate grains in an agar solution emulating MCs in a fibroglandular tissue background. Additionally, small Teflon spheres (2.4 mm diameter) were embedded in the agar solution for the purpose of fiducial marking and assessment of segmentation accuracy. The MC phantom was imaged on a high resolution (34 µm) commercial small-bore µCT scanner at high dose, and the images were used as the gold-standard for assessing MC size and for generating high resolution signal profiles of each MC. High-dose bCT scans of the MC phantom suspended in-air were acquired using 1 × 1 binning mode (75 µm dexel pitch) by averaging three repeat scans to produce a single low-noise reconstruction of the MC phantom. The high resolution µCT volume data set was then registered with the corresponding bCT data set after correcting for the bCT system spatial resolution. Microcalcification signal profiles constructed using low-noise bCT images were found to be in good agreement with those generated using the µCT scanner with all differences < 10% within the VOI surrounding each MC. The MC signal profiles were used as detection templates for a non-prewhitening-matched-filter model observer for scans acquired in a realistic breast phantom at 3, 6, and 9 mGy mean glandular dose. MC detectability using signal templates derived from bCT were shown to be in good agreement with those generated using µCT.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33384465

RESUMO

We investigate a series of two-alternative forced-choice (2AFC) discrimination tasks based on malignant features of abnormalities in low-dose lung CT scans. A total of 3 tasks are evaluated, and these consist of a size-discrimination task, a boundary-sharpness task, and an irregular-interior task. Target and alternative signal profiles for these tasks are modulated by one of two system transfer functions and embedded in ramp-spectrum noise that has been apodized for noise control in one of 4 different ways. This gives the resulting images statistical properties that are related to weak ground-glass lesions in axial slices of low-dose lung CT images. We investigate observer performance in these tasks using a combination of statistical efficiency and classification images. We report results of 24 2AFC experiments involving the three tasks. A staircase procedure is used to find the approximate 80% correct discrimination threshold in each task, with a subsequent set of 2,000 trials at this threshold. These data are used to estimate statistical efficiency with respect to the ideal observer for each task, and to estimate the observer template using the classification-image methodology. We find efficiency varies between the different tasks with lowest efficiency in the boundary-sharpness task, and highest efficiency in the non-uniform interior task. All three tasks produce clearly visible patterns of positive and negative weighting in the classification images. The spatial frequency plots of classification images show how apodization results in larger weights at higher spatial frequencies.

20.
Quant Imaging Med Surg ; 9(1): 63-74, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30788247

RESUMO

BACKGROUND: Breast imaging technology plays an important role in breast cancer planning and treatment. Recently, three-dimensional (3D) printing technology has become a trending issue in phantom constructions for medical applications, with its advantages of being customizable and cost-efficient. However, there is no current practice in the field of multi-purpose breast phantom for quality control (QC) in multi-modalities imaging. The purpose of this study was to fabricate a multi-purpose breast phantom with tissue-equivalent materials via a 3D printing technique for QC in multi-modalities imaging. METHODS: We used polyvinyl chloride (PVC) based materials and a 3D printing technique to construct a breast phantom. The phantom incorporates structures imaged in the female breast such as microcalcifications, fiber lesions, and tumors with different sizes. Moreover, the phantom was used to assess the sensitivity of lesion detection, depth resolution, and detectability thresholds with different imaging modalities. Phantom tissue equivalent properties were determined using computed tomography (CT) attenuation [Hounsfield unit (HU)] and magnetic resonance imaging (MRI) relaxation times. RESULTS: The 3D-printed breast phantom had an average background value of 36.2 HU, which is close to that of glandular breast tissue (40 HU). T1 and T2 relaxation times had an average relaxation time of 206.81±17.50 and 20.22±5.74 ms, respectively. Mammographic imaging had improved detection of microcalcification compared with ultrasound and MRI with multiple sequences [T1WI, T2WI and short inversion time inversion recovery (STIR)]. Soft-tissue lesion detection and cylindrical tumor contrast were superior with mammography and MRI compared to ultrasound. Hemispherical tumor detection was similar regardless of the imaging modality used. CONCLUSIONS: We developed a multi-purpose breast phantom using a 3D printing technique and determined its value for multi-modal breast imaging studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA