Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36941057

RESUMO

Cellular functionality relies on a well-balanced, but highly dynamic proteome. Dysfunction of mitochondrial protein import leads to the cytosolic accumulation of mitochondrial precursor proteins which compromise cellular proteostasis and trigger a mitoprotein-induced stress response. To dissect the effects of mitochondrial dysfunction on the cellular proteome as a whole, we developed pre-post thermal proteome profiling. This multiplexed time-resolved proteome-wide thermal stability profiling approach with isobaric peptide tags in combination with a pulsed SILAC labelling elucidated dynamic proteostasis changes in several dimensions: In addition to adaptations in protein abundance, we observed rapid modulations of the thermal stability of individual cellular proteins. Different functional groups of proteins showed characteristic response patterns and reacted with group-specific kinetics, allowing the identification of functional modules that are relevant for mitoprotein-induced stress. Thus, our new pre-post thermal proteome profiling approach uncovered a complex response network that orchestrates proteome homeostasis in eukaryotic cells by time-controlled adaptations of the abundance and the conformation of proteins.


Assuntos
Proteoma , Proteostase , Proteoma/metabolismo , Peptídeos , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo
2.
EMBO J ; 40(16): e107913, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34191328

RESUMO

The formation of protein aggregates is a hallmark of neurodegenerative diseases. Observations on patient samples and model systems demonstrated links between aggregate formation and declining mitochondrial functionality, but causalities remain unclear. We used Saccharomyces cerevisiae to analyze how mitochondrial processes regulate the behavior of aggregation-prone polyQ protein derived from human huntingtin. Expression of Q97-GFP rapidly led to insoluble cytosolic aggregates and cell death. Although aggregation impaired mitochondrial respiration only slightly, it considerably interfered with the import of mitochondrial precursor proteins. Mutants in the import component Mia40 were hypersensitive to Q97-GFP, whereas Mia40 overexpression strongly suppressed the formation of toxic Q97-GFP aggregates both in yeast and in human cells. Based on these observations, we propose that the post-translational import of mitochondrial precursor proteins into mitochondria competes with aggregation-prone cytosolic proteins for chaperones and proteasome capacity. Mia40 regulates this competition as it has a rate-limiting role in mitochondrial protein import. Therefore, Mia40 is a dynamic regulator in mitochondrial biogenesis that can be exploited to stabilize cytosolic proteostasis.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Peptídeos/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Linhagem Celular , Citosol/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Saccharomyces cerevisiae
3.
Mol Biol Cell ; 31(24): 2657-2668, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32997570

RESUMO

Most mitochondrial proteins are synthesized as precursors that carry N-terminal presequences. After they are imported into mitochondria, these targeting signals are cleaved off by the mitochondrial processing peptidase (MPP). Using the mitochondrial tandem protein Arg5,6 as a model substrate, we demonstrate that MPP has an additional role in preprotein maturation, beyond the removal of presequences. Arg5,6 is synthesized as a polyprotein precursor that is imported into mitochondria and subsequently separated into two distinct enzymes. This internal processing is performed by MPP, which cleaves the Arg5,6 precursor at its N-terminus and at an internal site. The peculiar organization of Arg5,6 is conserved across fungi and reflects the polycistronic arginine operon in prokaryotes. MPP cleavage sites are also present in other mitochondrial fusion proteins from fungi, plants, and animals. Hence, besides its role as a "ticket canceller" for removal of presequences, MPP exhibits a second conserved activity as an internal processing peptidase for complex mitochondrial precursor proteins.


Assuntos
Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Aldeído Oxirredutases/metabolismo , Sequência de Aminoácidos/genética , Sítios de Ligação/genética , Metaloendopeptidases/fisiologia , Complexos Multienzimáticos/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato/genética , Peptidase de Processamento Mitocondrial
4.
Mol Cell ; 77(1): 189-202.e6, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31668496

RESUMO

The proteolytic turnover of mitochondrial proteins is poorly understood. Here, we used a combination of dynamic isotope labeling and mass spectrometry to gain a global overview of mitochondrial protein turnover in yeast cells. Intriguingly, we found an exceptionally high turnover of the NADH dehydrogenase, Nde1. This homolog of the mammalian apoptosis inducing factor, AIF, forms two distinct topomers in mitochondria, one residing in the intermembrane space while the other spans the outer membrane and is exposed to the cytosol. The surface-exposed topomer triggers cell death in response to pro-apoptotic stimuli. The surface-exposed topomer is degraded by the cytosolic proteasome/Cdc48 system and the mitochondrial protease Yme1; however, it is strongly enriched in respiratory-deficient cells. Our data suggest that in addition to their role in electron transfer, mitochondrial NADH dehydrogenases such as Nde1 or AIF integrate signals from energy metabolism and cytosolic proteostasis to eliminate compromised cells from growing populations.


Assuntos
Morte Celular/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Proteostase/fisiologia , Proteases Dependentes de ATP/metabolismo , Animais , Apoptose/fisiologia , Fator de Indução de Apoptose/metabolismo , Citosol/metabolismo , Transporte de Elétrons/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA