Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cells ; 12(21)2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37947604

RESUMO

Pyruvate kinase M (PKM) 2 was described to interact with the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and suppress its activity. To further investigate the physiological importance of the PKM2:IP3R interaction, we developed and characterized HeLa PKM2 knockout (KO) cells. In the HeLa PKM2 KO cells, the release of Ca2+ to the cytosol appears to be more sensitive to low agonist concentrations than in HeLa wild-type (WT) cells. However, upon an identical IP3-induced Ca2+ release, Ca2+ uptake in the mitochondria is decreased in HeLa PKM2 KO cells, which may be explained by the smaller number of contact sites between the ER and the mitochondria. Furthermore, in HeLa PKM2 KO cells, mitochondria are more numerous, though they are smaller and less branched and have a hyperpolarized membrane potential. TAT-D5SD, a cell-permeable peptide representing a sequence derived from IP3R1 that can disrupt the PKM2:IP3R interaction, induces Ca2+ release into the cytosol and Ca2+ uptake into mitochondria in both HeLa WT and PKM2 KO cells. Moreover, TAT-D5SD induced apoptosis in HeLa WT and PKM2 KO cells but not in HeLa cells completely devoid of IP3Rs. These results indicate that PKM2 separately regulates cytosolic and mitochondrial Ca2+ handling and that the cytotoxic effect of TAT-D5SD depends on IP3R activity but not on PKM2. However, the tyrosine kinase Lck, which also interacts with the D5SD sequence, is expressed neither in HeLa WT nor PKM2 KO cells, and we can also exclude a role for PKM1, which is upregulated in HeLa PKM2 KO cells, indicating that the TAT-D5SD peptide has a more complex mode of action than anticipated.


Assuntos
Apoptose , Mitocôndrias , Humanos , Células HeLa , Receptores de Inositol 1,4,5-Trifosfato , Peptídeos , Proteínas de Ligação a Hormônio da Tireoide
2.
Cell Death Dis ; 14(9): 600, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684238

RESUMO

Intracellular Ca2+ signals control several physiological and pathophysiological processes. The main tool to chelate intracellular Ca2+ is intracellular BAPTA (BAPTAi), usually introduced into cells as a membrane-permeant acetoxymethyl ester (BAPTA-AM). Previously, we demonstrated that BAPTAi enhanced apoptosis induced by venetoclax, a BCL-2 antagonist, in diffuse large B-cell lymphoma (DLBCL). This finding implied a novel interplay between intracellular Ca2+ signaling and anti-apoptotic BCL-2 function. Hence, we set out to identify the underlying mechanisms by which BAPTAi enhances cell death in B-cell cancers. In this study, we discovered that BAPTAi alone induced apoptosis in hematological cancer cell lines that were highly sensitive to S63845, an MCL-1 antagonist. BAPTAi provoked a rapid decline in MCL-1-protein levels by inhibiting mTORC1-driven Mcl-1 translation. These events were not a consequence of cell death, as BAX/BAK-deficient cancer cells exhibited similar downregulation of mTORC1 activity and MCL-1-protein levels. Next, we investigated how BAPTAi diminished mTORC1 activity and identified its ability to impair glycolysis by directly inhibiting 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) activity, a previously unknown effect of BAPTAi. Notably, these effects were also induced by a BAPTAi analog with low affinity for Ca2+. Consequently, our findings uncover PFKFB3 inhibition as an Ca2+-independent mechanism through which BAPTAi impairs cellular metabolism and ultimately compromises the survival of MCL-1-dependent cancer cells. These findings hold two important implications. Firstly, the direct inhibition of PFKFB3 emerges as a key regulator of mTORC1 activity and a promising target in MCL-1-dependent cancers. Secondly, cellular effects caused by BAPTAi are not necessarily related to Ca2+ signaling. Our data support the need for a reassessment of the role of Ca2+ in cellular processes when findings were based on the use of BAPTAi.


Assuntos
Neoplasias , Monoéster Fosfórico Hidrolases , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Ácido Egtázico , Fosfofrutoquinase-2/genética
3.
Nat Rev Urol ; 20(9): 524-543, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36964408

RESUMO

Cancer cells proliferate, differentiate and migrate by repurposing physiological signalling mechanisms. In particular, altered calcium signalling is emerging as one of the most widespread adaptations in cancer cells. Remodelling of calcium signalling promotes the development of several malignancies, including prostate cancer. Gene expression data from in vitro, in vivo and bioinformatics studies using patient samples and xenografts have shown considerable changes in the expression of various components of the calcium signalling toolkit during the development of prostate cancer. Moreover, preclinical and clinical evidence suggests that altered calcium signalling is a crucial component of the molecular re-programming that drives prostate cancer progression. Evidence points to calcium signalling re-modelling, commonly involving crosstalk between calcium and other cellular signalling pathways, underpinning the onset and temporal progression of this disease. Discrete alterations in calcium signalling have been implicated in hormone-sensitive, castration-resistant and aggressive variant forms of prostate cancer. Hence, modulation of calcium signals and downstream effector molecules is a plausible therapeutic strategy for both early and late stages of prostate cancer. Based on this premise, clinical trials have been undertaken to establish the feasibility of targeting calcium signalling specifically for prostate cancer.


Assuntos
Cálcio , Neoplasias da Próstata , Masculino , Humanos , Cálcio/uso terapêutico , Neoplasias da Próstata/metabolismo , Transdução de Sinais/genética , Orquiectomia
4.
Biochim Biophys Acta Mol Cell Res ; 1869(4): 119206, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35026348

RESUMO

Pyruvate kinase isoform M2 (PKM2) is a rate-limiting glycolytic enzyme that is widely expressed in embryonic tissues. The expression of PKM2 declines in some tissues following embryogenesis, while other pyruvate kinase isozymes are upregulated. However, PKM2 is highly expressed in cancer cells and is believed to play a role in supporting anabolic processes during tumour formation. In this study, PKM2 was identified as an inositol 1,4,5-trisphosphate receptor (IP3R)-interacting protein by mass spectrometry. The PKM2:IP3R interaction was further characterized by pull-down and co-immunoprecipitation assays, which showed that PKM2 interacted with all three IP3R isoforms. Moreover, fluorescence microscopy indicated that both IP3R and PKM2 localized at the endoplasmic reticulum. PKM2 binds to IP3R at a highly conserved 21-amino acid site (corresponding to amino acids 2078-2098 in mouse type 1 IP3R isoform). Synthetic peptides (denoted 'TAT-D5SD' and 'D5SD'), based on the amino acid sequence at this site, disrupted the PKM2:IP3R interaction and potentiated IP3R-mediated Ca2+ release both in intact cells (TAT-D5SD peptide) and in a unidirectional 45Ca2+ flux assay on permeabilized cells (D5SD peptide). The TAT-D5SD peptide did not affect the enzymatic activity of PKM2. Reducing PKM2 protein expression using siRNA increased IP3R-mediated Ca2+ signalling in intact cells without altering the ER Ca2+ content. These data identify PKM2 as an IP3R-interacting protein that inhibits intracellular Ca2+ signalling. The elevated expression of PKM2 in cancer cells is therefore not solely connected to its canonical role in glycolytic metabolism, rather PKM2 also has a novel non-canonical role in regulating intracellular signalling.


Assuntos
Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Piruvato Quinase/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Linhagem Celular , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Linfócitos/citologia , Linfócitos/metabolismo , Camundongos , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo
5.
FEBS J ; 289(11): 3115-3131, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995415

RESUMO

The polycaspase inhibitor Z-VAD-fmk acts as an inhibitor of peptide: N-glycanase (NGLY1), an endoglycosidase which cleaves N-linked glycans from glycoproteins exported from the endoplasmic reticulum (ER) during ER-associated degradation (ERAD). Both pharmacological N-glycanase inhibition by Z-VAD-fmk and siRNA-mediated knockdown (KD) of NGLY1 induce GFP-LC3-positive puncta in HEK 293 cells. The activation of ER stress markers or induction of reactive oxygen species (ROS) is not observed under either condition. Moreover, Ca2+ handling is unaffected when observing release from intracellular stores. Under conditions of pharmacological NGLY1 inhibition or NGLY1 KD, upregulation of autophagosome formation without impairment of autophagic flux is observed. Enrichment of autophagosomes by immunoprecipitation (IP) and mass spectrometry-based proteomic analysis reveals comparable autophagosomal protein content. Gene ontology analysis of proteins enriched in autophagosome IPs shows overrepresentation of factors involved in protein translation, localization and targeting, RNA degradation and protein complex disassembly. Upregulation of autophagy represents a cellular adaptation to NGLY1 inhibition or KD, and ATG13-deficient mouse embryonic fibroblasts (MEFs) show reduced viability under these conditions. In contrast, treatment with pan-caspase inhibitor, Q-VD-OPh, does not induce cellular autophagy. Therefore, experiments with Z-VAD-fmk are complicated by the effects of NGLY1 inhibition, including induction of autophagy, and Q-VD-OPh represents an alternative caspase inhibitor free from this limitation. ENZYMES: Peptide:N-glycanase1, Peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine amidase [EC:3.5.1.52].


Assuntos
Fibroblastos , Proteômica , Animais , Autofagia , Caspases , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Peptídeos/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-31110129

RESUMO

Bcl-2 is a member of a family of proteins that regulate cell survival. Expression of Bcl-2 is aberrantly elevated in many types of cancer. Within cells of the immune system, Bcl-2 has a physiological role in regulating immune responses. However, in cancers arising from cells of the immune system Bcl-2 promotes cell survival and proliferation. This review summarizes discoveries over the past 30 years that have elucidated Bcl-2's role in the normal immune system, including its actions in regulating calcium (Ca2+) signals necessary for the immune response, and for Ca2+-mediated apoptosis at the end of an immune response. How Bcl-2 modulates the release of Ca2+ from intracellular stores via inositol 1,4,5-trisphosphate receptors (IP3R) is discussed, and in particular, the role of Bcl-2/IP3R interactions in promoting the survival of cancer cells by preventing Ca2+-mediated cell death. The development and usage of a peptide, referred to as TAT-Pep8, or more recently, BIRD-2, that induces death of cancer cells by inhibiting Bcl-2's control over IP3R-mediated Ca2+ elevation is discussed. Studies aimed at discovering a small molecule that mimics BIRD-2's anticancer mechanism of action are summarized, along with the prospect of such a compound becoming a novel therapeutic option for cancer.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Sinalização do Cálcio , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Retículo Endoplasmático/metabolismo , Retroalimentação Fisiológica , Humanos , Sistema Imunitário , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Domínios Proteicos , Transdução de Sinais , Sulfonamidas/farmacologia
7.
Cell Death Differ ; 26(3): 531-547, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29899382

RESUMO

Anti-apoptotic Bcl-2 proteins are upregulated in different cancers, including diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL), enabling survival by inhibiting pro-apoptotic Bcl-2-family members and inositol 1,4,5-trisphosphate (IP3) receptor (IP3R)-mediated Ca2+-signaling. A peptide tool (Bcl-2/IP3R Disruptor-2; BIRD-2) was developed to abrogate the interaction of Bcl-2 with IP3Rs by targeting Bcl-2's BH4 domain. BIRD-2 triggers cell death in primary CLL cells and in DLBCL cell lines. Particularly, DLBCL cells with high levels of IP3R2 were sensitive to BIRD-2. Here, we report that BIRD-2-induced cell death in DLBCL cells does not only depend on high IP3R2-expression levels, but also on constitutive IP3 signaling, downstream of the tonically active B-cell receptor. The basal Ca2+ level in SU-DHL-4 DLBCL cells was significantly elevated due to the constitutive IP3 production. This constitutive IP3 signaling fulfilled a pro-survival role, since inhibition of phospholipase C (PLC) using U73122 (2.5 µM) caused cell death in SU-DHL-4 cells. Milder inhibition of IP3 signaling using a lower U73122 concentration (1 µM) or expression of an IP3 sponge suppressed both BIRD-2-induced Ca2+ elevation and apoptosis in SU-DHL-4 cells. Basal PLC/IP3 signaling also fulfilled a pro-survival role in other DLBCL cell lines, including Karpas 422, RI-1 and SU-DHL-6 cells, whereas PLC inhibition protected these cells against BIRD-2-evoked apoptosis. Finally, U73122 treatment also suppressed BIRD-2-induced cell death in primary CLL, both in unsupported systems and in co-cultures with CD40L-expressing fibroblasts. Thus, constitutive IP3 signaling in lymphoma and leukemia cells is not only important for cancer cell survival, but also represents a vulnerability, rendering cancer cells dependent on Bcl-2 to limit IP3R activity. BIRD-2 seems to switch constitutive IP3 signaling from pro-survival into pro-death, presenting a plausible therapeutic strategy.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção
8.
Cell Calcium ; 72: 70-80, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29748135

RESUMO

The KRAS GTPase plays a fundamental role in transducing signals from plasma membrane growth factor receptors to downstream signalling pathways controlling cell proliferation, survival and migration. Activating KRAS mutations are found in 20% of all cancers and in up to 40% of colorectal cancers, where they contribute to dysregulation of cell processes underlying oncogenic transformation. Multiple KRAS-regulated cell functions are also influenced by changes in intracellular Ca2+ levels that are concurrently modified by receptor signalling pathways. Suppression of intracellular Ca2+ release mechanisms can confer a survival advantage in cancer cells, and changes in Ca2+ entry across the plasma membrane modulate cell migration and proliferation. However, inconsistent remodelling of Ca2+ influx and its signalling role has been reported in studies of transformed cells. To isolate the interaction between altered Ca2+ handling and mutated KRAS in colorectal cancer, we have previously employed isogenic cell line pairs, differing by the presence of an oncogenic KRAS allele (encoding KRASG13D), and have shown that reduced Ca2+ release from the ER and mitochondrial Ca2+ uptake contributes to the survival advantage conferred by oncogenic KRAS. Here we show in the same cell lines, that Store-Operated Ca2+ Entry (SOCE) and its underlying current, ICRAC are under the influence of KRASG13D. Specifically, deletion of the oncogenic KRAS allele resulted in enhanced STIM1 expression and greater Ca2+ influx. Consistent with the role of KRAS in the activation of the ERK pathway, MEK inhibition in cells with KRASG13D resulted in increased STIM1 expression. Further, ectopic expression of STIM1 in HCT 116 cells (which express KRASG13D) rescued SOCE, demonstrating a fundamental role of STIM1 in suppression of Ca2+ entry downstream of KRASG13D. These results add to the understanding of how ERK controls cancer cell physiology and highlight STIM1 as an important biomarker in cancerogenesis.


Assuntos
Sinalização do Cálcio , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ativação do Canal Iônico , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias/metabolismo , Oncogenes , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Benzamidas/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Molécula 2 de Interação Estromal/metabolismo
9.
PLoS One ; 12(8): e0182818, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28846697

RESUMO

BACKGROUND: T-type calcium channels (TTCCs) mediate calcium influx across the cell membrane. TTCCs regulate numerous physiological processes including cardiac pacemaking and neuronal activity. In addition, they have been implicated in the proliferation, migration and differentiation of tumour tissues. Although the signalling events downstream of TTCC-mediated calcium influx are not fully elucidated, it is clear that variations in the expression of TTCCs promote tumour formation and hinder response to treatment. METHODS: We examined the expression of TTCC genes (all three subtypes; CACNA-1G, CACNA-1H and CACNA-1I) and their prognostic value in three major solid tumours (i.e. gastric, lung and ovarian cancers) via a publicly accessible database. RESULTS: In gastric cancer, expression of all the CACNA genes was associated with overall survival (OS) among stage I-IV patients (all p<0.05). By combining the three potential biomarkers, a TTCC signature was developed, which retained a significant association with OS both in stage IV and stage I-III patients. In lung and ovarian cancer, association with OS was also significant when all tumour stages were considered, but was partly lost or inconclusive after splitting cases into localized and metastatic subsets. CONCLUSIONS: Alterations in CACNA gene expression are linked to tumour prognosis. Gastric cancer represents the most promising setting for further evaluation.


Assuntos
Canais de Cálcio Tipo T/genética , Neoplasias Pulmonares/genética , Neoplasias Ovarianas/genética , Neoplasias Gástricas/genética , Biomarcadores Tumorais , Bases de Dados Genéticas , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Prognóstico , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Taxa de Sobrevida
10.
J Cell Sci ; 127(Pt 7): 1607-19, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24522186

RESUMO

The GTPase Ras is a molecular switch engaged downstream of G-protein-coupled receptors and receptor tyrosine kinases that controls multiple cell-fate-determining signalling pathways. Ras signalling is frequently deregulated in cancer, underlying associated changes in cell phenotype. Although Ca(2+) signalling pathways control some overlapping functions with Ras, and altered Ca(2+) signalling pathways are emerging as important players in oncogenic transformation, how Ca(2+) signalling is remodelled during transformation and whether it has a causal role remains unclear. We have investigated Ca(2+) signalling in two human colorectal cancer cell lines and their isogenic derivatives in which the allele encoding oncogenic K-Ras (G13D) was deleted by homologous recombination. We show that agonist-induced Ca(2+) release from the endoplasmic reticulum (ER) intracellular Ca(2+) stores is enhanced by loss of K-Ras(G13D) through an increase in the Ca(2+) content of the ER store and a modification of the abundance of inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) subtypes. Consistently, uptake of Ca(2+) into mitochondria and sensitivity to apoptosis was enhanced as a result of K-Ras(G13D) loss. These results suggest that suppression of Ca(2+) signalling is a common response to naturally occurring levels of K-Ras(G13D), and that this contributes to a survival advantage during oncogenic transformation.


Assuntos
Cálcio/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Retículo Endoplasmático/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas ras/metabolismo , Apoptose/fisiologia , Sinalização do Cálcio , Linhagem Celular Tumoral , Genes ras , Células HCT116 , Humanos , Proteínas ras/genética
11.
Neurochem Int ; 59(3): 432-44, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21762743

RESUMO

The utilization of neural stem cells and their progeny in applications such as disease modelling, drug screening or safety assessment will require the development of robust methods for consistent, high quality uniform cell production. Previously, we described the generation of adherent, homogeneous, non-immortalized mouse and human neural stem cells derived from both brain tissue and pluripotent embryonic stem cells (Conti et al., 2005; Sun et al., 2008). In this study, we report the isolation or derivation of stable neurogenic human NS (hNS) lines from different regions of the 8-9 gestational week fetal human central nervous system (CNS) using new serum-free media formulations including animal component-free conditions. We generated more than 20 adherent hNS lines from whole brain, cortex, lobe, midbrain, hindbrain and spinal cord. We also compared the adherent hNS to some aspects of the human CNS-stem cells grown as neurospheres (hCNS-SCns), which were derived from prospectively isolated CD133(+)CD24(-/lo) cells from 16 to 20 gestational week fetal brain. We found, by RT-PCR and Taqman low-density array, that some of the regionally isolated lines maintained their regional identity along the anteroposterior axis. These NS cells exhibit the signature marker profile of neurogenic radial glia and maintain neurogenic and multipotential differentiation ability after extensive long-term expansion. Similarly, hCNS-SC can be expanded either as neurospheres or in extended adherent monolayer with a morphology and marker expression profile consistent with radial glia NS cells. We demonstrate that these lines can be efficiently genetically modified with standard nucleofection protocols for both protein overexpression and siRNA knockdown of exogenously expressed and endogenous genes exemplified with GFP and Nestin. To investigate the functional maturation of neuronal progeny derived from hNS we (a) performed Agilent whole genome microarray gene expression analysis from cultures undergoing neuronal differentiation for up to 32 days and found increased expression over time for a number of drugable target genes including neurotransmitter receptors and ion channels and (b) conducted a neuropharmacology study utilizing Fura-2 Ca(2+) imaging which revealed a clear shift from an initial glial reaction to carbachol to mature neuron-specific responses to glutamate and potassium after prolonged neuronal differentiation. Fully automated culture and scale-up of select hNS was achieved; cells supplied by the robot maintained the molecular profile of multipotent NS cells and performed faithfully in neuronal differentiation experiments. Here, we present validation and utility of a human neural lineage-restricted stem cell-based assay platform, including scale-up and automation, genetic engineering and functional characterization of differentiated progeny.


Assuntos
Neurônios/citologia , Células-Tronco/citologia , Animais , Adesão Celular , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Reação em Cadeia da Polimerase/métodos , Transplante de Células-Tronco
12.
Cell Calcium ; 50(3): 234-41, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21628070

RESUMO

The Bcl-2 protein, best known for its ability to inhibit apoptosis, interacts with the inositol 1,4,5-trisphosphate receptor (IP(3)R) Ca(2+) channel to regulate IP(3)-mediated Ca(2+) release from the endoplasmic reticulum. This review summarizes the current state of knowledge regarding the interaction of Bcl-2, and also its homologue Bcl-xl, with the IP(3)R and how these interactions regulate Ca(2+) signaling. The dual role of these interactions in promoting prosurvival Ca(2+) signals, while at the same time inhibiting proapoptotic Ca(2+) signals, is discussed. Moreover, this review will elucidate the recently recognized importance of the Bcl-2-IP(3)R interaction in human disease.


Assuntos
Transtorno Bipolar/metabolismo , Sinalização do Cálcio/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Morte Celular , Retículo Endoplasmático/metabolismo , Humanos
13.
PLoS One ; 5(7): e11828, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20676401

RESUMO

In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an "electromagnetic smog", with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+) homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012-2 W/Kg), thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons) that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP(3)-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates) were analysed to explore potential impact of radiofrequency field exposure on Ca2+ signals. Our data indicate that 900 MHz GSM fields do not affect either basal Ca2+ homeostasis or provoked Ca2+ signals. Even at the highest field strengths applied, which exceed typical phone exposure levels, we did not observe any changes in cellular Ca2+ signals. We conclude that under the conditions employed in our experiments, and using a highly-sensitive assay, we could not detect any consequence of RF exposure.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Hipocampo/citologia , Neurônios/metabolismo , Neurônios/efeitos da radiação , Feocromocitoma/metabolismo , Animais , Cálcio , Linhagem Celular , Telefone Celular , Humanos , Células PC12 , Ondas de Rádio/efeitos adversos , Ratos
14.
J Biol Chem ; 284(46): 31860-71, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19776014

RESUMO

Glucocorticoids are potent immunosuppressive agents that block upstream signaling events required for T cell receptor (TCR) activation. However, the mechanism by which glucocorticoids inhibit downstream responses, such as inositol 1,4,5-trisphosphate (IP(3))-induced calcium signals, is not completely understood. Here we demonstrate that low concentrations of dexamethasone rapidly convert transient calcium elevations to oscillations after strong TCR stimulation. Dexamethasone converted the pattern of calcium signaling by inhibiting the Src family kinase Lck, which was shown to interact with and positively regulate Type I IP(3) receptor. In addition, low concentrations of dexamethasone were sufficient to inhibit calcium oscillations and interleukin-2 mRNA after weak TCR stimulation. Together, these findings indicate that by inhibiting Lck and subsequently down-regulating IP(3) receptors, glucocorticoids suppress immune responses by weakening the strength of the TCR signal.


Assuntos
Anti-Inflamatórios/farmacologia , Cálcio/metabolismo , Dexametasona/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Apoptose , Western Blotting , Imunoprecipitação , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Timoma/tratamento farmacológico , Timoma/metabolismo , Timoma/patologia , Neoplasias do Timo/tratamento farmacológico , Neoplasias do Timo/metabolismo , Neoplasias do Timo/patologia , Transfecção , Células Tumorais Cultivadas
15.
Proc Natl Acad Sci U S A ; 106(34): 14397-402, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19706527

RESUMO

Although the presence of a BH4 domain distinguishes the antiapoptotic protein Bcl-2 from its proapoptotic relatives, little is known about its function. BH4 deletion converts Bcl-2 into a proapoptotic protein, whereas a TAT-BH4 fusion peptide inhibits apoptosis and improves survival in models of disease due to accelerated apoptosis. Thus, the BH4 domain has antiapoptotic activity independent of full-length Bcl-2. Here we report that the BH4 domain mediates interaction of Bcl-2 with the inositol 1,4,5-trisphosphate (IP3) receptor, an IP3-gated Ca(2+) channel on the endoplasmic reticulum (ER). BH4 peptide binds to the regulatory and coupling domain of the IP3 receptor and inhibits IP3-dependent channel opening, Ca(2+) release from the ER, and Ca(2+)-mediated apoptosis. A peptide inhibitor of Bcl-2-IP3 receptor interaction prevents these BH4-mediated effects. By inhibiting proapoptotic Ca(2+) signals at their point of origin, the Bcl-2 BH4 domain has the facility to block diverse pathways through which Ca(2+) induces apoptosis.


Assuntos
Apoptose/fisiologia , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Sequência de Aminoácidos , Animais , Anticorpos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Western Blotting , Complexo CD3/imunologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Humanos , Imunoprecipitação , Receptores de Inositol 1,4,5-Trifosfato/genética , Células Jurkat , Microscopia de Fluorescência , Dados de Sequência Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
16.
Mol Cell ; 31(2): 255-65, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18657507

RESUMO

The antiapoptotic protein Bcl-2 inhibits Ca2+ release from the endoplasmic reticulum (ER). One proposed mechanism involves an interaction of Bcl-2 with the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+ channel localized with Bcl-2 on the ER. Here we document Bcl-2-IP3R interaction within cells by FRET and identify a Bcl-2 interacting region in the regulatory and coupling domain of the IP3R. A peptide based on this IP3R sequence displaced Bcl-2 from the IP3R and reversed Bcl-2-mediated inhibition of IP3R channel activity in vitro, IP3-induced ER Ca2+ release in permeabilized cells, and cell-permeable IP3 ester-induced Ca2+ elevation in intact cells. This peptide also reversed Bcl-2's inhibition of T cell receptor-induced Ca2+ elevation and apoptosis. Thus, the interaction of Bcl-2 with IP3Rs contributes to the regulation of proapoptotic Ca2+ signals by Bcl-2, suggesting the Bcl-2-IP3R interaction as a potential therapeutic target in diseases associated with Bcl-2's inhibition of cell death.


Assuntos
Apoptose , Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Complexo CD3/metabolismo , Células COS , Sinalização do Cálcio/efeitos dos fármacos , Chlorocebus aethiops , Transferência Ressonante de Energia de Fluorescência , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Ativação do Canal Iônico/efeitos dos fármacos , Células Jurkat , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T/metabolismo
17.
Cell Calcium ; 44(3): 324-38, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18407350

RESUMO

Cell survival is promoted by the oncoprotein Bcl-2. Previous studies have established that one of the pro-survival actions of Bcl-2 is to reduce cellular fluxes of Ca2+ within cells. In particular, Bcl-2 has been demonstrated to inhibit the release of Ca2+ from the endoplasmic reticulum. However, the mechanism by which Bcl-2 causes reduced Ca2+ release is unclear. In the accompanying paper [C.J. Hanson, M.D. Bootman, C.W. Distelhorst, T. Maraldi, H.L. Roderick, The cellular concentration of Bcl-2 determines its pro- or anti-apoptotic effect, Cell Calcium (2008)], we described that only stable expression of Bcl-2 allowed it to work in a pro-survival manner whereas transient expression did not. In this study, we have employed HEK-293 cells that stably express Bcl-2, and which are, therefore, protected from pro-apoptotic stimuli, to examine the effect of Bcl-2 on Ca2+ homeostasis and signalling. We observed that Bcl-2 expression decreased the Ca2+ responses of cells induced by application of submaximal agonist concentrations. Whereas, decreasing endogenous Bcl-2 concentration using siRNA potentiated Ca2+ responses. Furthermore, we found that Bcl-2 expression reduced mitochondrial Ca2+ uptake by raising the threshold cytosolic Ca2+ concentration required to activate sequestration. Using a number of different assays, we did not find any evidence for reduction of endoplasmic reticulum luminal Ca2+ in our Bcl-2-expressing cells. Indeed, we observed that Bcl-2 served to preserve the content of the agonist-sensitive Ca2+ pool. Endogenous Bcl-2 was found to interact with inositol 1,4,5-trisphosphate receptors (InsP3Rs) in our cells, and to modify the profile of InsP3R expression. Our data suggest that the presence of Bcl-2 in the proteome of cells has multiple effects on agonist-mediated Ca2+ signals, and can abrogate responses to submaximal levels of stimulation through direct control of InsP3Rs.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sinalização do Cálcio , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Receptores de Inositol 1,4,5-Trifosfato/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transfecção
18.
Proc Natl Acad Sci U S A ; 105(7): 2427-32, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18250332

RESUMO

Imbalance of signals that control cell survival and death results in pathologies, including cancer and neurodegeneration. Two pathways that are integral to setting the balance between cell survival and cell death are controlled by lipid-activated protein kinase B (PKB)/Akt and Ca(2+). PKB elicits its effects through the phosphorylation and inactivation of proapoptotic factors. Ca(2+) stimulates many prodeath pathways, among which is mitochondrial permeability transition. We identified Ca(2+) release through inositol 1,4,5-trisphosphate receptor (InsP(3)R) intracellular channels as a prosurvival target of PKB. We demonstrated that in response to survival signals, PKB interacts with and phosphorylates InsP(3)Rs, significantly reducing their Ca(2+) release activity. Moreover, phosphorylation of InsP(3)Rs by PKB reduced cellular sensitivity to apoptotic stimuli through a mechanism that involved diminished Ca(2+) flux from the endoplasmic reticulum to the mitochondria. In glioblastoma cells that exhibit hyperactive PKB, the same prosurvival effect of PKB on InsP(3)R was found to be responsible for the insensitivity of these cells to apoptotic stimuli. We propose that PKB-mediated abolition of InsP(3)-induced Ca(2+) release may afford tumor cells a survival advantage.


Assuntos
Apoptose , Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cálcio/agonistas , Linhagem Celular , Chlorocebus aethiops , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Fosforilação , Serina/genética , Serina/metabolismo
19.
Cell Calcium ; 44(3): 243-58, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18215418

RESUMO

Bcl-2 is an oncoprotein that is widely known to promote cell survival by inhibiting apoptosis. We explored the consequences of different expression paradigms on the cellular action of Bcl-2. Using either transient or stable transfection combined with doxycycline-inducible expression, we titrated the cellular concentration of Bcl-2. With each expression paradigm Bcl-2 was correctly targeted to the endoplasmic reticulum and mitochondria. However, with protocols that generated the greatest cellular concentrations of Bcl-2 the structure of these organelles was dramatically altered. The endoplasmic reticulum appeared to be substantially fragmented, whilst mitochondria coalesced into dense perinuclear structures. Under these conditions of high Bcl-2 expression, cells were not protected from pro-apoptotic stimuli. Rather Bcl-2 itself caused a significant amount of spontaneous cell death, and sensitised the cells to apoptotic agents such as staurosporine or ceramide. We observed a direct correlation between Bcl-2 concentration and spontaneous apoptosis. Expression of calbindin, a calcium buffering protein, or an enzyme that inhibited inositol 1,4,5-trisphosphate-mediated calcium release, significantly reduced cell death caused by Bcl-2 expression. We further observed that high levels of Bcl-2 expression caused lipid peroxidation and that the deleterious effects of Bcl-2 could be abrogated by the reactive oxygen species (ROS) scavenger Trolox. When stably expressed at low levels, Bcl-2 did not corrupt organelle structure or trigger spontaneous apoptosis. Rather, it protected cells from pro-apoptotic stimuli. These data reveal that high cellular concentrations of Bcl-2 lead to a calcium- and ROS-dependent induction of death. Selection of the appropriate expression paradigm is therefore crucial when investigating the biological role of Bcl-2.


Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sinalização do Cálcio , Células Cultivadas , Fura-2/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peroxidação de Lipídeos , Microscopia Confocal , Proteínas Proto-Oncogênicas c-bcl-2/análise , Proteínas Proto-Oncogênicas c-bcl-2/genética , Espécies Reativas de Oxigênio/metabolismo , Transfecção
20.
Biol. Res ; 41(2): 183-195, 2008. ilus, graf
Artigo em Inglês | LILACS | ID: lil-495753

RESUMO

Neurons are a diverse cell type exhibiting hugely different morphologies and neurotransmitter specifications. Their distinctive phenotypes are established during differentiation from pluripotent precursor cells. The signalling pathways that specify the lineage down which neuronal precursor cells differentiate remain to be fully elucidated. Among the many signáis that impinge on the differentiation of neuronal cells, cytosolic calcium (Ca2+) has an important role. However, little is known about the nature of the Ca2+ signáis involved in fate choice in neuronal precursor cells, or their sources. In this study, we show that activation of either muscarinic or platelet-derived growth factor (PDGF) receptors induces a biphasic increase in cytosolic Ca2+ that consists of reléase from intracellular stores followed by sustained entry across the plasma membrane. For both agonists, the prolonged Ca2+ entry occurred via a store-operated pathway that was pharmacologically indistinguishable from Ca2+ entry initiated by thapsigargin. However, muscarinic receptor-activated Ca2+ entry was inhibited by siRNA-mediated knockdown of TRPC6, whereas Ca2+ entry evoked by PDGF was not. These data provide evidence for agonist-specific activation of molecularly distinct store-operated Ca2+ entry pathways, and raise the possibility of privileged communication between these Ca2+ entry pathways and downstream processes.


Assuntos
Humanos , Canais de Cálcio/efeitos dos fármacos , Cloreto de Metacolina/farmacologia , Agonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Células Cultivadas , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Immunoblotting , Neurônios/citologia , Neurônios/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA