Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 162(10): 3205-3207, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28667442

RESUMO

In recent years, giant viruses belonging to the family Mimiviridae have been proposed to be infectious agents in humans. In this work we provide evidence of mimivirus genome and neutralizing antibodies detection in humans.


Assuntos
Anticorpos Antivirais/sangue , Genoma Viral , Mimiviridae/isolamento & purificação , Brasil , Humanos , Mimiviridae/genética
2.
Front Microbiol ; 6: 1256, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635738

RESUMO

It is well recognized that gene duplication/acquisition is a key factor for molecular evolution, being directly related to the emergence of new genetic variants. The importance of such phenomena can also be expanded to the viral world, with impacts on viral fitness and environmental adaptations. In this work we describe the isolation and characterization of Niemeyer virus, a new mimivirus isolate obtained from water samples of an urban lake in Brazil. Genomic data showed that Niemeyer harbors duplicated copies of three of its four aminoacyl-tRNA synthetase genes (cysteinyl, methionyl, and tyrosyl RS). Gene expression analysis showed that such duplications allowed significantly increased expression of methionyl and tyrosyl aaRS mRNA by Niemeyer in comparison to APMV. Remarkably, phylogenetic data revealed that Niemeyer duplicated gene pairs are different, each one clustering with a different group of mimivirus strains. Taken together, our results raise new questions about the origins and selective pressures involving events of aaRS gain and loss among mimiviruses.

3.
Viruses ; 7(7): 3483-99, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26131958

RESUMO

Since the recent discovery of Samba virus, the first representative of the family Mimiviridae from Brazil, prospecting for mimiviruses has been conducted in different environmental conditions in Brazil. Recently, we isolated using Acanthamoeba sp. three new mimiviruses, all of lineage A of amoebal mimiviruses: Kroon virus from urban lake water; Amazonia virus from the Brazilian Amazon river; and Oyster virus from farmed oysters. The aims of this work were to sequence and analyze the genome of these new Brazilian mimiviruses (mimi-BR) and update the analysis of the Samba virus genome. The genomes of Samba virus, Amazonia virus and Oyster virus were 97%-99% similar, whereas Kroon virus had a low similarity (90%-91%) with other mimi-BR. A total of 3877 proteins encoded by mimi-BR were grouped into 974 orthologous clusters. In addition, we identified three new ORFans in the Kroon virus genome. Additional work is needed to expand our knowledge of the diversity of mimiviruses from Brazil, including if and why among amoebal mimiviruses those of lineage A predominate in the Brazilian environment.


Assuntos
Água Doce/virologia , Genoma Viral , Mimiviridae/genética , Sequência de Bases , Brasil , Mimiviridae/química , Mimiviridae/classificação , Mimiviridae/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
4.
Virol J ; 11: 120, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24976356

RESUMO

In 2003, Acanthamoeba polyphaga mimivirus (APMV) was first described and began to impact researchers around the world, due to its structural and genetic complexity. This virus founded the family Mimiviridae. In recent years, several new giant viruses have been isolated from different environments and specimens. Giant virus research is in its initial phase and information that may arise in the coming years may change current conceptions of life, diversity and evolution. Thus, this review aims to condense the studies conducted so far about the features and peculiarities of APMV, from its discovery to its clinical relevance.


Assuntos
Mimiviridae/isolamento & purificação , Virologia/tendências , Mimiviridae/genética , Mimiviridae/fisiologia
5.
Virol J ; 11: 95, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24886672

RESUMO

BACKGROUND: The identification of novel giant viruses from the nucleocytoplasmic large DNA viruses group and their virophages has increased in the last decade and has helped to shed light on viral evolution. This study describe the discovery, isolation and characterization of Samba virus (SMBV), a novel giant virus belonging to the Mimivirus genus, which was isolated from the Negro River in the Brazilian Amazon. We also report the isolation of an SMBV-associated virophage named Rio Negro (RNV), which is the first Mimivirus virophage to be isolated in the Americas. METHODS/RESULTS: Based on a phylogenetic analysis, SMBV belongs to group A of the putative Megavirales order, possibly a new virus related to Acanthamoeba polyphaga mimivirus (APMV). SMBV is the largest virus isolated in Brazil, with an average particle diameter about 574 nm. The SMBV genome contains 938 ORFs, of which nine are ORFans. The 1,213.6 kb SMBV genome is one of the largest genome of any group A Mimivirus described to date. Electron microscopy showed RNV particle accumulation near SMBV and APMV factories resulting in the production of defective SMBV and APMV particles and decreasing the infectivity of these two viruses by several logs. CONCLUSION: This discovery expands our knowledge of Mimiviridae evolution and ecology.


Assuntos
Mimiviridae/isolamento & purificação , Filogenia , Rios/virologia , Brasil , DNA Viral/química , DNA Viral/genética , Microscopia Eletrônica de Transmissão , Mimiviridae/classificação , Mimiviridae/genética , Mimiviridae/ultraestrutura , Dados de Sequência Molecular , Fases de Leitura Aberta , Floresta Úmida , Análise de Sequência de DNA , Vírion/ultraestrutura
6.
Emerg Infect Dis ; 20(3): 469-72, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24564967

RESUMO

To investigate circulation of mimiviruses in the Amazon Region of Brazil, we surveyed 513 serum samples from domestic and wild mammals. Neutralizing antibodies were detected in 15 sample pools, and mimivirus DNA was detected in 9 pools of serum from capuchin monkeys and in 16 pools of serum from cattle.


Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/virologia , Viroses/veterinária , Sequência de Aminoácidos , Animais , Animais Domésticos , Animais Selvagens , Brasil/epidemiologia , DNA Viral , Geografia , Mamíferos , Mimiviridae , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Carga Viral
7.
PLoS One ; 9(2): e87811, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498379

RESUMO

Viruses are extremely diverse and abundant and are present in countless environments. Giant viruses of the Megavirales order have emerged as a fascinating research topic for virologists around the world. As evidence of their ubiquity and ecological impact, mimiviruses have been found in multiple environmental samples. However, isolation of these viruses from environmental samples is inefficient, mainly due to methodological limitations and lack of information regarding the interactions between viruses and substrates. In this work, we demonstrate the long-lasting stability of mimivirus in environmental (freshwater and saline water) and hospital (ventilator plastic device tube) substrates, showing the detection of infectious particles after more than 9 months. In addition, an enrichment protocol was implemented that remarkably increased mimivirus detection from all tested substrates, including field tests. Moreover, biological, morphological and genetic tests revealed that the enrichment protocol maintained mimivirus particle integrity. In conclusion, our work demonstrated the stability of APMV in samples of environmental and health interest and proposed a reliable and easy protocol to improve giant virus isolation. The data presented here can guide future giant virus detection and isolation studies.


Assuntos
Amebíase/diagnóstico , Líquido da Lavagem Broncoalveolar/química , Meio Ambiente , Mimiviridae/química , Mimiviridae/isolamento & purificação , Água/análise , Amebíase/genética , Amebíase/virologia , DNA Viral/genética , Hospitais , Humanos , Mimiviridae/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Virologia/métodos
8.
Arch Virol ; 159(5): 1039-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24271007

RESUMO

Amoebas of the genus Acanthamoeba are protists that are associated with human disease and represent a public health concern. They can harbor pathogenic microorganisms, acting as a platform for pathogen replication. Acanthamoeba polyphaga mimivirus (APMV), the type species of the genus Mimivirus, family Mimiviridae, represents the largest group of amoeba-associated viruses that has been described to date. Recent studies have demonstrated that APMV and other giant viruses may cause pneumonia. Amoebas can survive in most environments and tolerate various adverse conditions, including UV light irradiation, high concentrations of disinfectants, and a broad range of temperatures. However, it is unknown how the amoebal intracellular environment influences APMV stability and resistance to adverse conditions. Therefore, in this work, we evaluated the stability of APMV, either purified or carried by the amoeba host, under extreme conditions, including UV irradiation, heat and exposure to six different chemical biocides. After each treatment, the virus was titrated in amoebas using the TCID50 method. APMV was more stable in all resistance tests performed when located inside its host. Our results demonstrate that Acanthamoeba acts as a natural bunker for APMV, increasing viral resistance to extreme physical and chemical conditions. The data raise new questions regarding the survival of APMV in nature and in hospital environments.


Assuntos
Acanthamoeba/virologia , Desinfetantes/farmacologia , Temperatura Alta , Mimiviridae/fisiologia , Raios Ultravioleta , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA