Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046053

RESUMO

Current treatment strategies for osteoarthritis (OA) predominantly address symptoms with limited disease-modifying potential. There is a growing interest in the use of adipose-derived stem cells (ADSCs) for OA treatment and developing biomimetic injectable hydrogels as cell delivery systems. Biomimetic injectable hydrogels can simulate the native tissue microenvironment by providing appropriate biological and chemical cues for tissue regeneration. A biomimetic injectable hydrogel using amnion membrane (AM) was developed which can self-assemble in situ and retain the stem cells at the target site. In the present study, we evaluated the efficacy of intraarticular injections of AM hydrogels with and without ADSCs in reducing inflammation and cartilage degeneration in a collagenase-induced OA rat model. A week after the induction of OA, rats were treated with control (phosphate-buffered saline), ADSCs, AM gel, and AM-ADSCs. Inflammation and cartilage regeneration was evaluated by joint swelling, analysis of serum by cytokine profiling and Raman spectroscopy, gross appearance, and histology. Both AM and ADSC possess antiinflammatory and chondroprotective properties to target the sites of inflammation in an osteoarthritic joint, thereby reducing the inflammation-mediated damage to the articular cartilage. The present study demonstrated the potential of AM hydrogel to foster cartilage tissue regeneration, a comparable regenerative effect of AM hydrogel and ADSCs, and the synergistic antiinflammatory and chondroprotective effects of AM and ADSC to regenerate cartilage tissue in a rat OA model.


Assuntos
Tecido Adiposo/citologia , Âmnio , Hidrogéis , Osteoartrite/terapia , Transplante de Células-Tronco , Células-Tronco/metabolismo , Âmnio/química , Animais , Diferenciação Celular , Células Cultivadas , Cromatografia Líquida , Citocinas/metabolismo , Hidrogéis/química , Imuno-Histoquímica , Injeções Intra-Articulares , Espectrometria de Massas , Osteoartrite/etiologia , Osteoartrite/patologia , Ratos , Análise Espectral Raman , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Resultado do Tratamento
2.
Biosens Bioelectron ; 190: 113403, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130086

RESUMO

Acute lymphoblastic leukemia (ALL) is one of the most common malignancies that account for nearly one-third of all pediatric cancers. The current diagnostic assays are time-consuming, labor-intensive, and require expensive reagents. Here, we report a label-free approach featuring diffraction phase imaging and Raman microscopy that can retrieve both morphological and molecular attributes for label-free optical phenotyping of individual B cells. By investigating leukemia cell lines of early and late stages along with the healthy B cells, we show that phase images can capture subtle morphological differences among the healthy, early, and late stages of leukemic cells. By exploiting its biomolecular specificity, we demonstrate that Raman microscopy is capable of accurately identifying not only different stages of leukemia cells but also individual cell lines at each stage. Overall, our study provides a rationale for employing this hybrid modality to screen leukemia cells using the widefield QPI and using Raman microscopy for accurate differentiation of early and late-stage phenotypes. This contrast-free and rapid diagnostic tool exhibits great promise for clinical diagnosis and staging of leukemia in the near future.


Assuntos
Técnicas Biossensoriais , Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfócitos B , Linhagem Celular , Criança , Humanos , Microscopia
3.
ACS Sens ; 5(10): 3281-3289, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33092347

RESUMO

Identification and classification of leukemia cells in a rapid and label-free fashion is clinically challenging and thus presents a prime arena for implementing new diagnostic tools. Quantitative phase imaging, which maps optical path length delays introduced by the specimen, has been demonstrated to discern cellular phenotypes based on differential morphological attributes. Rapid acquisition capability and the availability of label-free images with high information content have enabled researchers to use machine learning (ML) to reveal latent features. We developed a set of ML classifiers, including convolutional neural networks, to discern healthy B cells from lymphoblasts and classify stages of B cell acute lymphoblastic leukemia. Here, we show that the average dry mass and volume of normal B cells are lower than those of cancerous cells and that these morphologic parameters increase further alongside disease progression. We find that the relaxed training requirements of a ML approach are conducive to the classification of cell type, with minimal space, training time, and memory requirements. Our findings pave the way for a larger study on clinical samples of acute lymphoblastic leukemia, with the overarching goal of its broader use in hematopathology, where the prospect of objective diagnoses with minimal sample preparation remains highly desirable.


Assuntos
Aprendizado de Máquina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfócitos B , Diagnóstico por Imagem , Humanos , Redes Neurais de Computação , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico
4.
Sci Rep ; 10(1): 18751, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127964

RESUMO

Inflammation leads to chondrocyte senescence and cartilage degeneration, resulting in osteoarthritis (OA). Adipose-derived stem cells (ADSCs) exert paracrine effects protecting chondrocytes from degenerative changes. However, the lack of optimum delivery systems for ADSCs limits its use in the clinic. The use of extracellular matrix based injectable hydrogels has gained increased attention due to their unique properties. In the present study, we developed hydrogels from amnion tissue as a delivery system for ADSCs. We investigated the potential of amnion hydrogel to maintain ADSC functions, the synergistic effect of AM with ADSC in preventing the catabolic responses of inflammation in stimulated chondrocytes. We also investigated the role of Wnt/ß-catenin signaling pathway in IL-1ß induced inflammation in chondrocytes and the ability of AM-ADSC to inhibit Wnt/ß-catenin signaling. Our results showed that AM hydrogels supported cell viability, proliferation, and stemness. ADSCs, AM hydrogels and AM-ADSCs inhibited the catabolic responses of IL-1ß and inhibited the Wnt/ß-catenin signaling pathway, indicating possible involvement of Wnt/ß-catenin signaling pathways in IL-1ß induced inflammation. The results also showed that the synergistic effect of AM-ADSCs was more pronounced in preventing catabolic responses in activated chondrocytes. In conclusion, we showed that AM hydrogels can be used as a potential carrier for ADSCs, and can be developed as a potential therapeutic agent for treating OA.


Assuntos
Adipócitos/citologia , Âmnio/química , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Hidrogéis/química , Interleucina-1beta/farmacologia , Células-Tronco/citologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/farmacologia , Feminino , Humanos , Inflamação/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Óxido Nítrico/metabolismo , Ratos , Células-Tronco/efeitos dos fármacos
5.
J Biophotonics ; 12(4): e201800291, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30421505

RESUMO

Label-free quantitative imaging is highly desirable for studying live cells by extracting pathophysiological information without perturbing cell functions. Here, we demonstrate a novel label-free multimodal optical imaging system with the capability of providing comprehensive morphological and molecular attributes of live cells. Our morpho-molecular microscopy (3M) system draws on the combined strength of quantitative phase microscopy (QPM) and Raman microscopy to probe the morphological features and molecular fingerprinting characteristics of each cell under observation. While the commonr-path geometry of our QPM system allows for highly sensitive phase measurement, the Raman microscopy is equipped with dual excitation wavelengths and utilizes the same detection and dispersion system, making it a distinctive multi-wavelength system with a small footprint. We demonstrate the applicability of the 3M system by investigating nucleated and nonnucleated cells. This integrated label-free platform has a promising potential in preclinical research, as well as in clinical diagnosis in the near future.


Assuntos
Microscopia/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA