Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 12(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295788

RESUMO

Intrauterine growth restriction (IUGR) due to fetal exposure to glucocorticoid excess results in metabolic inflexibility and hepatic steatosis upon nutritional stress during adulthood. We previously demonstrated that rats born to dexamethasone (DEX)-treated mothers developed hepatic steatosis when exposed to 10% fructose solution during adult life. Persistent triacylglyceride (TAG) accumulation in the liver, in turn, is a feature of non-alcoholic fatty liver disease (NAFLD), which serves as a risk factor for non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). In the present study, we demonstrate that the combination of IUGR and fructose treatment during adulthood also results in increased hepatic myeloperoxidase (MPO) activity, AKT phosphorylation and serum aspartate transaminase. Growth-restricted rats also presented reduced hepatic TRIB3 and GADD45a after fructose treatment. Other markers of cell proliferation, such as Cyclin D, PCNA, Hgf and Hspa4/Hsp70 expression and the number of Ki-67 positive cells, were all increased in the liver of growth- restricted rats treated with fructose. On the other hand, the combination of IUGR and fructose treatment during adult life reduced the levels of IGF-1. In conclusion, our data indicate that after exposure to fructose, adult rats subjected to dexamethasone-induced IUGR display exacerbated molecular changes in markers of NASH and HCC.

2.
Nutrients ; 12(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036430

RESUMO

Fructose consumption by rodents modulates both hepatic and intestinal lipid metabolism and gluconeogenesis. We have previously demonstrated that in utero exposure to dexamethasone (DEX) interacts with fructose consumption during adult life to exacerbate hepatic steatosis in rats. The aim of this study was to clarify if adult rats born to DEX-treated mothers would display differences in intestinal gluconeogenesis after excessive fructose intake. To address this issue, female Wistar rats were treated with DEX during pregnancy and control (CTL) mothers were kept untreated. Adult offspring born to CTL and DEX-treated mothers were assigned to receive either tap water (Control-Standard Chow (CTL-SC) and Dexamethasone-Standard Chow (DEX-SC)) or 10% fructose in the drinking water (CTL-fructose and DEX-fructose). Fructose consumption lasted for 80 days. All rats were subjected to a 40 h fasting before sample collection. We found that DEX-fructose rats have increased glucose and reduced lactate in the portal blood. Jejunum samples of DEX-fructose rats have enhanced phosphoenolpyruvate carboxykinase (PEPCK) expression and activity, higher facilitated glucose transporter member 2 (GLUT2) and facilitated glucose transporter member 5 (GLUT5) content, and increased villous height, crypt depth, and proliferating cell nuclear antigen (PCNA) staining. The current data reveal that rats born to DEX-treated mothers that consume fructose during adult life have increased intestinal gluconeogenesis while recapitulating metabolic and morphological features of the neonatal jejunum phenotype.


Assuntos
Dexametasona/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Células Epiteliais/patologia , Frutose/efeitos adversos , Gluconeogênese , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Exposição Materna/efeitos adversos , Troca Materno-Fetal/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Animais , Feminino , Transportador de Glucose Tipo 2/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Gravidez , Ratos Wistar
3.
Mol Reprod Dev ; 87(6): 720-734, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32418283

RESUMO

Gonadotropin-releasing hormone (GnRH) is a key molecule in the initiation of the hypothalamic-pituitary-gonadal axis. Thus, knowledge about GnRH may contribute to the effectiveness of species reproduction. Using a Neotropical tetra Astyanax altiparanae as a fish model species, the GnRH forms were characterized at the molecular level and the role of injected GnRHs in vivo was evaluated. The full-length complementary DNA (cDNA) sequences of preproGnRH2 (612 bp) and preproGnRH3 (407 bp) of A. altiparanae were obtained, and the GnRH1 form was not detected. The cDNA sequences of preproGnRH2 and preproGnRH3 were found to be conserved, but a change in the amino acid at position 8 of the GnRH3 decapeptide of A. altiparanae was observed. All the injected GnRHs stimulated lhß messenger RNA (mRNA) expression but not fshß mRNA expression, and only GnRH2 was able to increase maturation-inducing steroid (MIS) levels and possibly stimulate oocyte release. Furthermore, only GnRH2 was able to start the entire reproductive hormonal cascade and induce spawning.


Assuntos
Characidae , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/farmacologia , Reprodução/efeitos dos fármacos , Animais , Characidae/genética , Characidae/metabolismo , Characidae/fisiologia , Caraciformes/genética , Caraciformes/metabolismo , Clonagem Molecular , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Reprodução/genética , Análise de Sequência de DNA/veterinária
4.
Eur J Nutr ; 57(8): 2887-2895, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29098425

RESUMO

INTRODUCTION: Inflammation plays a key role in the development of insulin resistance and atherosclerosis. Fatty acids and fiber intake can selectively alter gene expression by modifying inflammation. PURPOSE: We compared the postprandial expression of inflammatory genes after 2 distinct high-fat breakfast meals, before and after 1-month dietary interventions. METHODS: This crossover clinical trial included 18 individuals at low-to-moderate cardiometabolic risk participating in evaluations before and after two 4-week breakfast interventions-one rich in saturated fatty acids (SFA) and the other in unsaturated fatty acids (unSFA) and fiber. Participants underwent meal tests with similar compositions to the breakfasts. Variables were compared by Student t test. The expression of inflammatory genes in leukocytes was analyzed using RT-PCR. RESULTS: Before and after the intervention with the SFA-enriched breakfast, this meal test induced a higher relative postprandial IL-1ß expression compared to the responses to the unSFA and fiber-enriched meal (p = 0.02). On the other hand, following the intervention with the unSFA-fiber-enriched breakfast, postprandial IL-6 expression showed a reduction tendency comparing to the pre-intervention value (p = 0.08). Although fasting IL-1ß, IL-6, MCP-1 and IFN-γ expressions had not changed after interventions, their circulating levels increased after the SFA-enriched meal test but not after the unSFA meal (p value between changes < 0.05). CONCLUSIONS: Our findings indicated that a single SFA-enriched meal is able to acutely induce the IL-1ß expression and regularly consumed could trigger systemic inflammation, while increased unSFA consumption could attenuate the inflammatory status. Further investigations are needed to deepen understanding how dietary fatty acids and fiber influence cardiometabolic risk profile by modulating inflammatory gene expression and circulating biomarkers. CLINICAL TRIAL INFORMATION: This study is registered at the Brazilian Registry of Clinical Trials (ReBEC ID: RBR-98x6b5). Available at: http://www.ensaiosclinicos.gov.br .


Assuntos
Ácidos Graxos Insaturados/administração & dosagem , Ácidos Graxos/administração & dosagem , Inflamação/genética , Período Pós-Prandial , Adulto , Idoso , Biomarcadores/sangue , Glicemia/metabolismo , Desjejum , Quimiocina CCL2/sangue , Colesterol/sangue , Estudos Cross-Over , Gorduras na Dieta/administração & dosagem , Fibras na Dieta/administração & dosagem , Jejum , Feminino , Humanos , Interferon gama/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Tamanho da Amostra , Triglicerídeos/sangue
5.
Sci Rep ; 7(1): 10367, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871187

RESUMO

We investigated the effect of dexamethasone during the last week of pregnancy on glucose and lipid metabolism in male offspring. Twelve-week old offspring were evaluated after fasting for 12-hours (physiological) and 60-hours (prolonged). Physiological fasting resulted in glucose intolerance, decreased glucose clearance after pyruvate load and increased PEPCK expression in rats born to dexamethasone-treated mothers (DEX). Prolonged fasting resulted in increased glucose tolerance and increased glucose clearance after pyruvate load in DEX. These modulations were accompanied by accumulation of hepatic triglycerides (TG). Sixty-hour fasted DEX also showed increased citrate synthase (CS) activity, ATP citrate lyase (ACLY) content, and pyruvate kinase 2 (pkm2), glucose transporter 1 (slc2a1) and lactate dehydrogenase-a (ldha) expressions. Hepatic AKT2 was increased in 60-hour fasted DEX, in parallel with reduced miRNAs targeting the AKT2 gene. Altogether, we show that metabolic programming by prenatal dexamethasone is characterized by an unexpected hepatic TG accumulation during prolonged fasting. The underlying mechanism may depend on increased hepatic glycolytic flux due to increased pkm2 expression and consequent conversion of pyruvate to non-esterified fatty acid synthesis due to increased CS activity and ACLY levels. Upregulation of AKT2 due to reduced miRNAs may serve as a permanent mechanism leading to increased pkm2 expression.


Assuntos
Dexametasona/farmacologia , Jejum/metabolismo , Fígado/metabolismo , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Triglicerídeos/metabolismo , Animais , Biomarcadores , Feminino , Glucose/metabolismo , Intolerância à Glucose , Testes de Função Hepática , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Fatores de Tempo
6.
Nutrients ; 9(4)2017 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-28346369

RESUMO

Recent studies show that the metabolic effects of fructose may vary depending on the phase of its consumption along with the light/dark cycle. Here, we investigated the metabolic outcomes of fructose consumption by rats during either the light (LPF) or the dark (DPF) phases of the light/dark cycle. This experimental approach was combined with other interventions, including restriction of chow availability to the dark phase, melatonin administration or intracerebroventricular inhibition of adenosine monophosphate-activated protein kinase (AMPK) with Compound C. LPF, but not DPF rats, exhibited increased hypothalamic AMPK phosphorylation, glucose intolerance, reduced urinary 6-sulfatoxymelatonin (6-S-Mel) (a metabolite of melatonin) and increased corticosterone levels. LPF, but not DPF rats, also exhibited increased chow ingestion during the light phase. The mentioned changes were blunted by Compound C. LPF rats subjected to dark phase-restricted feeding still exhibited increased hypothalamic AMPK phosphorylation but failed to develop the endocrine and metabolic changes. Moreover, melatonin administration to LPF rats reduced corticosterone and prevented glucose intolerance. Altogether, the present data suggests that consumption of fructose during the light phase results in out-of-phase feeding due to increased hypothalamic AMPK phosphorylation. This shift in spontaneous chow ingestion is responsible for the reduction of 6-S-Mel and glucose intolerance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ritmo Circadiano , Frutose/efeitos adversos , Hipotálamo/efeitos dos fármacos , Melatonina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Corticosterona/sangue , Relação Dose-Resposta a Droga , Intolerância à Glucose , Hipotálamo/metabolismo , Masculino , Melatonina/administração & dosagem , Melatonina/análogos & derivados , Melatonina/urina , Fosforilação , Ratos , Ratos Sprague-Dawley
7.
Chem Biol Interact ; 258: 245-56, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27645309

RESUMO

Despite its common use, the synthetic glucocorticoid dexamethasone can cause several adverse effects, such as diabetes and insulin-related metabolic impairment. Thus, research on molecules that could provide the same anti-inflammatory response with milder side effects is constant. In this work the anti-inflammatory activity of the natural sesquiterpene polygodial, extracted from the endemic Brazilian plant Drimys brasiliensis Miers (Winteraceae), was investigated. Employing a pancreatic ß-cell model (INS 1E), the effect of polygodial on signaling pathways is similar to that caused by dexamethasone - both increased MKP1 and decreased ERK1/2 expression in a dose-response and time-dependent manner. Relating to such finding, nuclear translocation of the glucocorticoid receptor was also discovered to be induced by the sesquiterpene. Molecular modeling results indicated that polygodial was capable of docking to the glucocorticoid receptor, but presented preference for the Arg611 binding site rather than Thr739 when set to bind freely inside the pocket. At last, fragmentation of DNA was verified as consequence of sesquiterpene-induced cell death. Altogether, our results suggest that, like dexamethasone, polygodial interacts the glucocorticoid receptor ligand binding domain but create fewer ligand-protein interactions at the site, yielding a weaker effector response. Such property provides an advantage when regarding the adverse effects resulting from stronger affinity ligands of the glucocorticoid receptor, such as in the case of the current standard dexamethasone-based treatment. This aspect, also, turns polygodial an interesting hit compound to the development of new drugs based on its backbone structure providing less harmful anti-inflammatory treatments.


Assuntos
Dexametasona/farmacologia , Drimys/química , Glucocorticoides/farmacologia , Células Secretoras de Insulina/metabolismo , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Dexametasona/química , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Transporte Proteico/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Sesquiterpenos/química , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
8.
Mol Cell Endocrinol ; 426: 73-90, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-26872612

RESUMO

Transcriptional mechanisms associated with iodide-induced downregulation of NIS expression remain uncertain. Here, we further analyzed the transcriptional regulation of NIS gene expression by excess iodide using PCCl3 cells. NIS promoter activity was reduced in cells treated for 12-24 h with 10(-5) to 10(-3) M NaI. Site-directed mutagenesis of Pax8 and NF-κB cis-acting elements abrogated the iodide-induced NIS transcription repression. Indeed, excess iodide (10(-3) M) excluded Pax8 from the nucleus, decreased p65 total expression and reduced their transcriptional activity. Importantly, p65-Pax8 physical interaction and binding to NIS upstream enhancer were reduced upon iodide treatment. PI3K/Akt pathway activation by iodide-induced ROS production is involved in the transcriptional repression of NIS expression. In conclusion, the results indicated that excess iodide transcriptionally represses NIS gene expression through the impairment of Pax8 and p65 transcriptional activity. Furthermore, the data presented herein described novel roles for PI3K/Akt signaling pathway and oxidative status in the thyroid autoregulatory phenomenon.


Assuntos
Iodeto de Sódio/farmacologia , Simportadores/genética , Transcrição Gênica , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Regulação para Baixo , Ativação Enzimática , Proteínas de Neoplasias/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fator de Transcrição PAX8 , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Simportadores/metabolismo , Tireotropina/fisiologia
9.
Am J Physiol Endocrinol Metab ; 306(1): E109-20, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24253049

RESUMO

Excess of glucocorticoids (GCs) during pregnancy is strongly associated with the programming of glucose intolerance in the offspring. However, the impact of high GC levels on maternal metabolism is not clearly documented. This study aimed to test the hypothesis that mothers exposed to elevated levels of GCs might also display long-term disturbances in glucose homeostasis. Dexamethasone (DEX) was administered noninvasively to the mothers via drinking water between the 14th and the 19th days of pregnancy. Mothers were subjected to glucose and insulin tolerance tests at 1, 2, 3, 6, and 12 mo postweaning. Pregnant rats not treated with DEX and age-matched virgin rats were used as controls. Pancreatic islets were isolated at the 20th day of pregnancy and 12 mo postweaning in order to evaluate glucose-stimulated insulin secretion. The expression of the miR-29 family was also studied due to its responsiveness to GCs and its well-documented role in the regulation of pancreatic ß-cell function. Rats treated with DEX during pregnancy presented long-term glucose intolerance and impaired insulin secretion. These changes correlated with 1) increased expression of miR-29 and its regulator p53, 2) reduced expression of syntaxin-1a, a direct target of miR-29, and 3) altered expression of genes related to cellular senescence. Our data demonstrate that the use of DEX during pregnancy results in deleterious outcomes to the maternal metabolism, hallmarked by reduced insulin secretion and glucose intolerance. This maternal metabolic programming might be a consequence of time-sustained upregulation of miR-29s in maternal pancreatic islets.


Assuntos
Glicemia/metabolismo , Glucocorticoides/efeitos adversos , Homeostase/efeitos dos fármacos , MicroRNAs/genética , Regulação para Cima/efeitos dos fármacos , Animais , Glicemia/análise , Senescência Celular/genética , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Feminino , Idade Gestacional , Glucocorticoides/administração & dosagem , Intolerância à Glucose/etiologia , Teste de Tolerância a Glucose , Insulina/metabolismo , Secreção de Insulina , Gravidez , Cuidado Pré-Natal , RNA Mensageiro/análise , Ratos , Ratos Wistar , Sintaxina 1/genética , Proteína Supressora de Tumor p53/genética
10.
PLoS One ; 8(10): e76786, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204674

RESUMO

A positive relationship between obesity and asthma has been well documented. The AMP-activated protein kinase (AMPK) activator metformin reverses obesity-associated insulin resistance (IR) and inhibits different types of inflammatory responses. This study aimed to evaluate the effects of metformin on the exacerbation of allergic eosinophilic inflammation in obese mice. Male C57BL6/J mice were fed for 10 weeks with high-fat diet (HFD) to induce obesity. The cell infiltration and inflammatory markers in bronchoalveolar lavage (BAL) fluid and lung tissue were evaluated at 48 h after ovalbumin (OVA) challenge. HFD obese mice displayed peripheral IR that was fully reversed by metformin (300 mg/kg/day, two weeks). OVA-challenge resulted in higher influx of total cell and eosinophils in lung tissue of obese mice compared with lean group. As opposed, the cell number in BAL fluid of obese mice was reduced compared with lean group. Metformin significantly reduced the tissue eosinophil infiltration and prevented the reduction of cell counts in BAL fluid. In obese mice, greater levels of eotaxin, TNF-α and NOx, together with increased iNOS protein expression were observed, all of which were normalized by metformin. In addition, metformin nearly abrogated the binding of NF-κB subunit p65 to the iNOS promoter gene in lung tissue of obese mice. Lower levels of phosphorylated AMPK and its downstream target acetyl CoA carboxylase (ACC) were found in lung tissue of obese mice, which were restored by metformin. In separate experiments, the selective iNOS inhibitor aminoguanidine (20 mg/kg, 3 weeks) and the anti-TNF-α mAb (2 mg/kg) significantly attenuated the aggravation of eosinophilic inflammation in obese mice. In conclusion, metformin inhibits the TNF-α-induced inflammatory signaling and NF-κB-mediated iNOS expression in lung tissue of obese mice. Metformin may be a good pharmacological strategy to control the asthma exacerbation in obese individuals.


Assuntos
Asma/complicações , Inflamação/prevenção & controle , Metformina/farmacologia , Obesidade/complicações , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Western Blotting , Líquido da Lavagem Broncoalveolar/citologia , Dieta Hiperlipídica/efeitos adversos , Inibidores Enzimáticos/farmacologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Eosinófilos/patologia , Guanidinas/farmacologia , Hipoglicemiantes/farmacologia , Inflamação/etiologia , Resistência à Insulina , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Ovalbumina/farmacologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Am J Physiol Endocrinol Metab ; 305(2): E230-42, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23695212

RESUMO

Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.


Assuntos
Antioxidantes/farmacologia , Gluconeogênese/efeitos dos fármacos , Hipotálamo/metabolismo , Fígado/metabolismo , Melatonina/farmacologia , Proteína Oncogênica v-akt/metabolismo , Receptor MT1 de Melatonina/efeitos dos fármacos , Receptor MT2 de Melatonina/efeitos dos fármacos , Animais , Western Blotting , Imunofluorescência , Teste de Tolerância a Glucose , Hipotálamo/efeitos dos fármacos , Injeções Intraventriculares , Fígado/efeitos dos fármacos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Ácido Pirúvico/metabolismo , Ratos , Ratos Wistar , Receptores Muscarínicos/efeitos dos fármacos
12.
Eur J Pharmacol ; 700(1-3): 201-9, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23220708

RESUMO

High systolic blood pressure caused by endothelial dysfunction is a comorbidity of metabolic syndrome that is mediated by local inflammatory signals. Insulin-induced vasorelaxation due to endothelial nitric oxide synthase (eNOS) activation is highly dependent on the activation of the upstream insulin-stimulated serine/threonine kinase (AKT) and is severely impaired in obese, hypertensive rodents and humans. Neutralisation of circulating tumor necrosis factor-α (TNFα) with infliximab improves glucose homeostasis, but the consequences of this pharmacological strategy on systolic blood pressure and eNOS activation are unknown. To address this issue, we assessed the temporal changes in the systolic pressure of spontaneously hypertensive rats (SHR) treated with infliximab. We also assessed the activation of critical proteins that mediate insulin activity and TNFα-mediated insulin resistance in the aorta and cardiac left ventricle. Our data demonstrate that infliximab prevents the upregulation of both systolic pressure and left ventricle hypertrophy in SHR. These effects paralleled an increase in AKT/eNOS phosphorylation and a reduction in the phosphorylation of inhibitor of nuclear factor-κB (Iκß) and c-Jun N-terminal kinase (JNK) in the aorta. Overall, our study revealed the cardiovascular benefits of infliximab in SHR. In addition, the present findings further suggested that the reduction of systolic pressure and left ventricle hypertrophy by infliximab are secondary effects to the reduction of endothelial inflammation and the recovery of AKT/eNOS pathway activation.


Assuntos
Anticorpos Monoclonais/farmacologia , Aorta/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Animais , Aorta/metabolismo , Aorta/patologia , Aorta/fisiopatologia , Caspase 3/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Teste de Tolerância a Glucose , Hipertrofia Ventricular Esquerda/complicações , Infliximab , Resistência à Insulina , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
13.
Eur J Pharmacol ; 689(1-3): 285-93, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22713545

RESUMO

Quercetin is a potent anti-inflammatory flavonoid, but its capacity to modulate insulin sensitivity in obese insulin resistant conditions is unknown. This study investigated the effect of quercetin treatment upon insulin sensitivity of ob/ob mice and its potential molecular mechanisms. Obese ob/ob mice were treated with quercetin for 10 weeks, and L6 myotubes were treated with either palmitate or tumor necrosis factor-α (TNFα) plus quercetin. Cells and muscles were processed for analysis of glucose transporter 4 (GLUT4), TNFα and inducible nitric oxide synthase (iNOS) expression, and c-Jun N-terminal kinase (JNK) and inhibitor of nuclear factor-κB (NF-κB) kinase (IκK) phosphorylation. Myotubes were assayed for glucose uptake and NF-κB translocation. Chromatin immunoprecipitation assessed NF-κB binding to GLUT4 promoter. Quercetin treatment improved whole body insulin sensitivity by increasing GLUT4 expression and decreasing JNK phosphorylation, and TNFα and iNOS expression in skeletal muscle. Quercetin suppressed palmitate-induced upregulation of TNFα and iNOS and restored normal levels of GLUT4 in myotubes. In parallel, quercetin suppressed TNFα-induced reduction of glucose uptake in myotubes. Nuclear accumulation of NF-κB in myotubes and binding of NF-κB to GLUT4 promoter in muscles of ob/ob mice were also reduced by quercetin. We demonstrated that quercetin decreased the inflammatory status in skeletal muscle of obese mice and in L6 myotubes. This effect was followed by increased muscle GLUT4, with parallel improvement of insulin sensitivity. These results point out quercetin as a putative strategy to manage inflammatory-related insulin resistance.


Assuntos
Mediadores da Inflamação/antagonistas & inibidores , Insulina/fisiologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Quercetina/farmacologia , Animais , Antioxidantes/farmacologia , Regulação para Baixo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Obesos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Quercetina/uso terapêutico , Regulação para Cima/efeitos dos fármacos
14.
PLoS One ; 7(6): e38795, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719949

RESUMO

BACKGROUND: Shift work was recently described as a factor that increases the risk of Type 2 diabetes mellitus. In addition, rats born to mothers subjected to a phase shift throughout pregnancy are glucose intolerant. However, the mechanism by which a phase shift transmits metabolic information to the offspring has not been determined. Among several endocrine secretions, phase shifts in the light/dark cycle were described as altering the circadian profile of melatonin production by the pineal gland. The present study addresses the importance of maternal melatonin for the metabolic programming of the offspring. METHODOLOGY/PRINCIPAL FINDINGS: Female Wistar rats were submitted to SHAM surgery or pinealectomy (PINX). The PINX rats were divided into two groups and received either melatonin (PM) or vehicle. The SHAM, the PINX vehicle and the PM females were housed with male Wistar rats. Rats were allowed to mate and after weaning, the male and female offspring were subjected to a glucose tolerance test (GTT), a pyruvate tolerance test (PTT) and an insulin tolerance test (ITT). Pancreatic islets were isolated for insulin secretion, and insulin signaling was assessed in the liver and in the skeletal muscle by western blots. We found that male and female rats born to PINX mothers display glucose intolerance at the end of the light phase of the light/dark cycle, but not at the beginning. We further demonstrate that impaired glucose-stimulated insulin secretion and hepatic insulin resistance are mechanisms that may contribute to glucose intolerance in the offspring of PINX mothers. The metabolic programming described here occurs due to an absence of maternal melatonin because the offspring born to PINX mothers treated with melatonin were not glucose intolerant. CONCLUSIONS/SIGNIFICANCE: The present results support the novel concept that maternal melatonin is responsible for the programming of the daily pattern of energy metabolism in their offspring.


Assuntos
Metabolismo Energético/fisiologia , Melatonina/fisiologia , Animais , Feminino , Teste de Tolerância a Glucose , Insulina/sangue , Resistência à Insulina , Gravidez , Resultado da Gravidez , Ratos , Ratos Wistar , Transdução de Sinais
15.
Cell Physiol Biochem ; 28(1): 33-40, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21865846

RESUMO

BACKGROUND/AIM: Granulocyte colony-stimulating factor (G-CSF) reduces myocardial injury and improves cardiac function after myocardial infarction (MI). We investigated the early alterations provided by G-CSF and the chronic repercussions in infarcted rats. METHODS: Male Wistar rats (200-250g) received vehicle (MI) or G-CSF (MI-GCSF) (50 µg/kg, sc) at 7, 3 and 1 days before MI surgery. Afterwards MI was produced and infarct size was measured 1 and 15 days after surgery. Expression of anti- and proapoptotic proteins was evaluated immediately before surgery. 24 hours after surgery, apoptotic nuclei were evaluated. Two weeks after MI, left ventricular (LV) function was evaluated, followed by in situ LV diastolic pressure-volume evaluation. RESULTS: Infarct size was decreased by 1 day pre-treatment before occlusion (36±2.8 vs. 44±2.1% in MI; P<0.05) and remained reduced at 15 days after infarction (28±2.2 vs. 36±1.4% in MI; P<0.05). G-CSF pretreatment increased Bcl-2 and Bcl-xL protein expression, but did not alter Bax in LV. Apoptotic nuclei were reduced by treatment (Sham: 0.46±0.42, MI: 15.5±2.43, MI-GCSF: 5.34±3.34%; P<0.05). Fifteen days after MI, cardiac function remained preserved in G-CSF pretreated rats. The LV dilation was reduced in MI-G-CSF group as compared to MI rats, being closely associated with infarct size. CONCLUSION: The early beneficial effects of G-CSF were essentials to preserve cardiac function at a chronic stage of myocardial infarction.


Assuntos
Fator Estimulador de Colônias de Granulócitos/farmacologia , Insuficiência Cardíaca/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Leucócitos/citologia , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/cirurgia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
16.
Endocrinology ; 152(4): 1253-63, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21303940

RESUMO

It is known that the circadian rhythm in hepatic phosphoenolpyruvate carboxykinase expression (a limiting catalytic step of gluconeogenesis) and hepatic glucose production is maintained by both daily oscillation in autonomic inputs to the liver and night feeding behavior. However, increased glycemia and reduced melatonin (Mel) levels have been recently shown to coexist in diabetic patients at the end of the night period. In parallel, pinealectomy (PINX) is known to cause glucose intolerance with increased basal glycemia exclusively at the end of the night. The mechanisms that underlie this metabolic feature are not completely understood. Here, we demonstrate that PINX rats show night-time hepatic insulin resistance characterized by reduced insulin-stimulated RAC-α serine/threonine-protein kinase phosphorylation and increased phosphoenolpyruvate carboxykinase expression. In addition, PINX rats display increased conversion of pyruvate into glucose at the end of the night. The regulatory mechanism suggests the participation of unfolded protein response (UPR), because PINX induces night-time increase in activating transcription factor 6 expression and prompts a circadian fashion of immunoglobulin heavy chain-binding protein, activating transcription factor 4, and CCAAT/enhancer-binding protein-homologous protein expression with Zenith values at the dark period. PINX also caused a night-time increase in Tribble 3 and regulatory-associated protein of mammalian target of rapamycin; both were reduced in liver of PINX rats treated with Mel. Treatment of PINX rats with 4-phenyl butyric acid, an inhibitor of UPR, restored night-time hepatic insulin sensitivity and abrogated gluconeogenesis in PINX rats. Altogether, the present data show that a circadian oscillation of UPR occurs in the liver due to the absence of Mel. The nocturnal UPR activation is related with night-time hepatic insulin resistance and increased gluconeogenesis in PINX rats.


Assuntos
Gluconeogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Melatonina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Ritmo Circadiano , Ingestão de Alimentos/efeitos dos fármacos , Immunoblotting , Resistência à Insulina/fisiologia , Proteína Oncogênica v-akt/metabolismo , Fenilbutiratos/farmacologia , Fosforilação/efeitos dos fármacos , Glândula Pineal/fisiologia , Glândula Pineal/cirurgia , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Am J Physiol Regul Integr Comp Physiol ; 300(1): R92-100, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21068199

RESUMO

Endocrine pancreas from pregnant rats undergoes several adaptations that comprise increase in ß-cell number, mass and insulin secretion, and reduction of apoptosis. Lactogens are the main hormones that account for these changes. Maternal pancreas, however, returns to a nonpregnant state just after the delivery. The precise mechanism by which this reversal occurs is not settled but, in spite of high lactogen levels, a transient increase in apoptosis was already reported as early as the 3rd day of lactation (L3). Our results revealed that maternal islets displayed a transient increase in DNA fragmentation at L3, in parallel with decreased RAC-alpha serine/threonine-protein kinase (AKT) phosphorylation (pAKT), a known prosurvival kinase. Wortmannin completely abolished the prosurvival action of prolactin (PRL) in cultured islets. Decreased pAKT in L3-islets correlated with increased Tribble 3 (TRB3) expression, a pseudokinase inhibitor of AKT. PERK and eIF2α phosphorylation transiently increased in islets from rats at the first day after delivery, followed by an increase in immunoglobulin heavy chain-binding protein (BiP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in islets from L3 rats. Chromatin immunoprecipitation (ChIP) and Re-ChIP experiments further confirmed increased binding of the heterodimer ATF4/CHOP to the TRB3 promoter in L3 islets. Treatment with PBA, a chemical chaperone that inhibits UPR, restored pAKT levels and inhibited the increase in apoptosis found in L3. Moreover, PBA reduced CHOP and TRB3 levels in ß-cell from L3 rats. Altogether, our study collects compelling evidence that UPR underlies the physiological and transient increase in ß-cell apoptosis after delivery. The UPR is likely to counteract prosurvival actions of PRL by reducing pAKT through ATF4/CHOP-induced TRB3 expression.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Apoptose/fisiologia , Ilhotas Pancreáticas/metabolismo , Lactação/fisiologia , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Células Cultivadas , Feminino , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Modelos Animais , Fosforilação/fisiologia , Prolactina/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Ratos Wistar , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo
18.
J Endocrinol ; 206(2): 183-93, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20488947

RESUMO

Unfolded protein response (UPR)-mediated pancreatic beta-cell death has been described as a common mechanism by which palmitate (PA) and pro-inflammatory cytokines contribute to the development of diabetes. There are evidences that interleukin 6 (IL6) has a protective action against beta-cell death induced by pro-inflammatory cytokines; the effects of IL6 on PA-induced apoptosis have not been investigated yet. In the present study, we have demonstrated that PA selectively disrupts IL6-induced RAC-alpha serine/threonine-protein kinase (AKT) activation without interfering with signal transducer and activator of transcription 3 phosphorylation in RINm5F cells. The inability of IL6 to activate AKT in the presence of PA correlated with an inefficient protection against PA-induced apoptosis. In contrast to PA, IL6 efficiently reduced apoptosis induced by pro-inflammatory cytokines. In addition, we have demonstrated that IL6 is unable to overcome PA-stimulated UPR, as assessed by activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) expression, X-box binding protein-1 gene mRNA splicing, and pancreatic eukaryotic initiation factor-2 alpha kinase phosphorylation, whereas no significant induction of UPR by pro-inflammatory cytokines was detected. This unconditional stimulation of UPR and apoptosis by PA was accompanied by the stimulation of CHOP and tribble3 (TRIB3) expression, irrespective of the presence of IL6. These findings suggest that IL6 is unable to protect pancreatic beta-cells from PA-induced apoptosis because it does not repress UPR activation. In this way, CHOP and ATF4 might mediate PA-induced TRIB3 expression and, by extension, the suppression of IL6 activation of pro-survival kinase AKT.


Assuntos
Apoptose , Insulinoma/metabolismo , Interleucina-6/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resposta a Proteínas não Dobradas , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , História do Século XVI , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Palmitatos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/metabolismo
19.
Mol Cell Endocrinol ; 319(1-2): 30-8, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20079400

RESUMO

Insulin-induced glucose uptake by skeletal muscle results from Akt2 activation and is severely impaired during insulin resistance. Recently, we and others have demonstrated that BMP9 improves glucose homeostasis in diabetic and non-diabetic rodents. However, the mechanism by which BMP9 modulates insulin action remains unknown. Here we demonstrate that Smad5, a transcription factor activated by BMP9, and Akt2, are upregulated in differentiated L6 myotubes. Smad5, rather than Smad1/8, is downregulated "in vivo" and "in vitro" by dexamethasone. Smad5 knockdown decreased Akt2 expression and serine phosphorylation and insulin-induced glucose uptake, and increased the expression of the lipid phosphatase Ship2. Additionally, binding of Smad5 to Akt2 gene is decreased in dexamethasone-treated rats and increased in L6 myotubes compared to myoblasts. The present study indicates that Smad5 regulates glucose uptake in skeletal muscle by controlling Akt2 expression and phosphorylation. These finding reveals Smad5 as a potential target for the therapeutic of type 2 diabetes.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Smad5/metabolismo , Análise de Variância , Animais , Western Blotting , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Imunoprecipitação , Inositol Polifosfato 5-Fosfatases , Insulina/farmacologia , Masculino , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação/fisiologia , Interferência de RNA/fisiologia , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Proteína Smad5/genética , Proteína Smad8/metabolismo , Transfecção
20.
Metabolism ; 59(2): 215-23, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19766270

RESUMO

Interleukin-10 (IL-10) is an endogenous factor that restrains hepatic insulin resistance in diet-induced steatosis. Reducing IL-10 expression increases proinflammatory activity in the steatotic liver and worsens insulin resistance. As the transcriptional coactivator proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) plays a central role in dysfunctional hepatocytic activity in diet-induced steatosis, we hypothesized that at least part of the action of PGC-1alpha could be mediated by reducing the transcription of the IL-10 gene. Here, we used immunoblotting, real-time polymerase chain reaction, immunocytochemistry, and chromatin immunoprecipitation assay to investigate the role of PGC-1alpha in the control of IL-10 expression in hepatic cells. First, we show that, in the intact steatotic liver, the expressions of IL-10 and PGC-1alpha are increased. Inhibiting PGC-1alpha expression by antisense oligonucleotide increases IL-10 expression and reduces the steatotic phenotype. In cultured hepatocytes, the treatment with saturated and unsaturated fatty acids increased IL-10 expression. This was accompanied by increased association of PGC-1alpha with c-Maf and p50-nuclear factor (NF) kappaB, 2 transcription factors known to modulate IL-10 expression. In addition, after fatty acid treatment, PGC-1alpha, c-Maf, and p50-NFkappaB migrate from the cytosol to the nuclei of hepatocytes and bind to the IL-10 promoter region. Inhibiting NFkappaB activation with salicylate reduces IL-10 expression and the association of PGC-1alpha with p50-NFkappaB. Thus, PGC-1alpha emerges as a potential transcriptional regulator of the inflammatory phenomenon taking place in the steatotic liver.


Assuntos
Ácidos Graxos/farmacologia , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Interleucina-10/genética , Proteínas de Ligação a RNA/fisiologia , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Animais , Núcleo Celular/metabolismo , DNA/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/prevenção & controle , Expressão Gênica/efeitos dos fármacos , Hepatócitos/ultraestrutura , Masculino , Camundongos , NF-kappa B/antagonistas & inibidores , Subunidade p50 de NF-kappa B/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-maf/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Wistar , Transativadores/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA