Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(5): 3677-3686, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38266116

RESUMO

BACKGROUND: Dose area product in water (DAPw) in small fields relies on the use of detectors with a sensitive area larger than the irradiation field. This quantity has recently been used to establish primary standards down to 5 mm field size, with an uncertainty smaller than 0.7%. It has the potential to decrease the uncertainty related to field output factors, but is not currently integrated into treatment planning systems. PURPOSE: This study aimed to explore the feasibility of converting DAPw into a point dose in small fields by determining the volume averaging correction factor. By determining the field output factors, a comparison between the so-called "DAPw to point dose" approach and the IAEA TRS483 methodology was performed. METHOD: Diodes, microdiamonds, and a micro ionization chamber were used to measure field output factors following the IAEA TRS483 methodology on two similar linacs equipped with circular cones down to 6 mm diameter. For the "DAPw to point dose" approach, measurements were performed with a dedicated and built-in-house 3 cm diameter plane-parallel ionization chamber calibrated in terms of DAPw in the French Primary Dosimetry Standards Laboratory LNE-LNHB. Beam profile measurements were performed to generate volume averaging correction factors enabling the conversion of an integral DAPw measurement into a point dose and the determination of the field output factors. Both sets of field output factors were compared. RESULTS: According to the IAEA TRS483 methodology, field output factors were within ±3% for all detectors on both linacs. Large variations were observed for the volume averaging correction factors with a maximum spread between the detectors of 26% for the smallest field size. Consequently, deviations of up to 15% between the "IAEA TRS483" and the "DAPw to point dose" methodologies were found for the field output factor of the smallest field size. This was attributed to the difficulty in accurately determining beam profiles in small fields. CONCLUSION: Although primary standards associated with small uncertainties can be established in terms of DAPw in a primary laboratory, the "DAPw to point dose" methodology requires volume averaging correction to derive a field output factor from DAPw measurements. None of the point detectors studied provided satisfactory results, and additional work using other detectors, such as film, is still required to allow the transfer of a DAP primary standard to users in terms of absorbed point dose.


Assuntos
Estudos de Viabilidade , Doses de Radiação , Radiometria , Radiometria/instrumentação , Incerteza , Dosagem Radioterapêutica , Aceleradores de Partículas , Calibragem
2.
Phys Med ; 113: 102656, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37625218

RESUMO

PURPOSE: The end-to-end (E2E) quality assurance (QA) test is a unique tool for validating the treatment chain undergone by patients in external radiotherapy. It should be conducted in three dimensions (3D) to get accurate results. This study aims to implement these tests with Fricke-Xylenol orange-Gelatin (FXG) gel dosimeter and a newly developed dual-wavelength reading method on the Vista16™ optical Computed Tomography (CT) scanner (ModusQA) for three treatment techniques in stereotactic radiotherapy, on Novalis (Varian) and CyberKnife (Accuray) linear accelerators. METHODS: The tests were performed in head phantoms. Gel measurements were compared with planned dose distributions and measured by film and ion chamber measurements by plotting isodose curves and dose profiles, and by conducting a 3D local gamma-index analysis (2%/2mm criteria). RESULTS: Gamma passing rates were higher than 95 %. Point dose differences between treatment planning and gel and ion chamber measurements at the isocenter were < 2.3 % for both treatments delivered on the Novalis accelerator, while this difference was higher than 4 % for the treatment delivered on the CyberKnife, highlighting a small overdosing of the tumor volume. A good agreement was observed between gel and film dose profiles. CONCLUSIONS: This study presents the successful implementation of 3D E2E QA tests for stereotactic radiotherapy with FXG gel dosimetry and a dual-wavelength reading method on an optical CT scanner. This dosimetric method provides 3D absolute dose distributions in the 0.25 - 10 Gy dose range with a high spatial resolution and a dose uncertainty of around 2 % (k=1).


Assuntos
Gelatina , Radiocirurgia , Humanos , Dosímetros de Radiação , Tomografia Computadorizada de Feixe Cônico
3.
Phys Med ; 98: 18-27, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35489128

RESUMO

PURPOSE: To present primary standards establishment in terms of Dose Area Product (DAP) for small field sizes. METHODS: A large section graphite calorimeter and two plane-parallel ionization chambers were designed and built in-house. These chambers were calibrated in a 6MV FFF beam at the maximum dose rate of 1400 UM/min for fields defined by specifically designed circular collimators of 5, 7.5, 10, 13 and 15 mm diameter and jaws of 5, 7, 10, 13 and 15 mm side length on a Varian TrueBeam linac. RESULTS: The two chambers show the same behaviour regardless of field shape and size. From 5 to 15 mm, calibration coefficients slightly increase with the field size with a magnitude of 1.8% and 1.1% respectively for the two chambers, and are independent of the field shape. This tendency was confirmed by Monte Carlo calculations. The average associated uncertainty of the calibration coefficients is around 0.6% at k=1. CONCLUSIONS: For the first time, primary standards in terms of DAP were established by graphite calorimetry for an extended range of small field sizes. These promising results open the door for an alternative approach in small fields dosimetry.


Assuntos
Grafite , Calorimetria/métodos , Método de Monte Carlo , Aceleradores de Partículas , Fótons/uso terapêutico , Radiometria/métodos
4.
Phys Med ; 97: 1-12, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35313240

RESUMO

PURPOSE: This study is about the development of a new dual wavelength reading method of Fricke-Xylenol orange-Gelatin (FXG) gel dosimeters on the Vista16™ optical Computed Tomography (CT) scanner to perform 3D dose distribution measurements in stereotactic and dynamic radiotherapy treatments. METHODS: The dosimetric characteristics of an optimized FXG gel composition and its optical CT readout have been evaluated. A dual wavelength reading method has been developed on the CT scanner at wavelengths 590 nm and 633 nm. Small-field dose profile measurements with FXG gel and microDiamond (PTW) detectors were compared by γ-index analysis (0.5%/0.5 mm) to validate this method. RESULTS: This reading method exhibits linear calibration curves in the 0-4 Gy and 2-10 Gy dose ranges at 590 nm and 633 nm respectively. The absorbed dose values below 4 Gy, measured at 590 nm, and those above 4 Gy, measured at 633 nm, are combined to plot a complete profile. A γ passing rate of 93.4% was achieved. CONCLUSIONS: The new reading method of FXG gel dosimeters has been implemented on the Vista16™ scanner to span absorbed doses representative of stereotactic and dynamic radiotherapy treatments and enable 3D measurements in tumor volumes and surrounding healthy tissues. Small-field profile measurements validated this reading method as FXG gel dosimeters and microDiamond detectors were in very close agreement. This dosimetric method is a promising candidate for 3D quality assurance end-to-end tests in stereotactic and dynamic radiotherapy.


Assuntos
Gelatina , Dosímetros de Radiação , Tomografia Computadorizada de Feixe Cônico , Fenóis , Radiometria/métodos , Sulfóxidos
5.
J Radiol Prot ; 40(4)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33226005

RESUMO

In 2018, the International Radiation Protection Association (IRPA) established its third task group (TG) on the implementation of the eye lens dose limit. To contribute to sharing experience and raising awareness within the radiation protection community about protection of workers in exposure of the lens of the eye, the TG conducted a questionnaire survey and analysed the responses. This paper provides an overview of the results of the questionnaire.


Assuntos
Cristalino , Exposição Ocupacional , Proteção Radiológica , Humanos , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Doses de Radiação , Pesquisa
6.
Phys Med ; 45: 106-116, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29472074

RESUMO

PURPOSE: To investigate the feasibility of using the ratio of dose-area product at 20 cm and 10 cm water depths (DAPR20,10) as a beam quality specifier for radiotherapy photon beams with field diameter below 2 cm. METHODS: Dose-area product was determined as the integral of absorbed dose to water (Dw) over a surface larger than the beam size. 6 MV and 10 MV photon beams with field diameters from 0.75 cm to 2 cm were considered. Monte Carlo (MC) simulations were performed to calculate energy-dependent dosimetric parameters and to study the DAPR20,10 properties. Aspects relevant to DAPR20,10 measurement were explored using large-area plane-parallel ionization chambers with different diameters. RESULTS: DAPR20,10 was nearly independent of field size in line with the small differences among the corresponding mean beam energies. Both MC and experimental results showed a dependence of DAPR20,10 on the measurement setup and the surface over which Dw is integrated. For a given setup, DAPR20,10 values obtained using ionization chambers with different air-cavity diameters agreed with one another within 0.4%, after the application of MC correction factors accounting for effects due to the chamber size. DAPR20,10 differences among the small field sizes were within 1% and sensitivity to the beam energy resulted similar to that of established beam quality specifiers based on the point measurement of Dw. CONCLUSIONS: For a specific measurement setup and integration area, DAPR20,10 proved suitable to specify the beam quality of small photon beams for the selection of energy-dependent dosimetric parameters.


Assuntos
Fótons/uso terapêutico , Radiometria/métodos , Dosagem Radioterapêutica , Ar , Radioisótopos de Cobalto/uso terapêutico , Simulação por Computador , Método de Monte Carlo , Aceleradores de Partículas , Incerteza , Água
7.
Med Phys ; 38(3): 1168-77, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21520829

RESUMO

PURPOSE: Current codes of practice for clinical reference dosimetry of high-energy photon beams in conventional radiotherapy recommend using a 10 x 10 cm2 square field, with the detector at a reference depth of 10 cm in water and 100 cm source to surface distance (SSD) (AAPM TG-51) or 100 cm source-to-axis distance (SAD) (IAEA TRS-398). However, the maximum field size of a helical tomotherapy (HT) machine is 40 x 5 cm2 defined at 85 cm SAD. These nonstandard conditions prevent a direct implementation of these protocols. The purpose of this study is twofold: To check the absorbed dose in water and dose rate calibration of a tomotherapy unit as well as the accuracy of the tomotherapy treatment planning system (TPS) calculations for a specific test case. METHOD: Both topics are based on the use of electron paramagnetic resonance (EPR) using alanine as transfer dosimeter between the Laboratoire National Henri Becquerel (LNHB) 60Co-gamma-ray reference beam and the Institut Curie's HT beam. Irradiations performed in the LNHB reference 60Co-gamma-ray beam allowed setting up the calibration method, which was then implemented and tested at the LNHB 6 MV linac x-ray beam, resulting in a deviation of 1.6% (at a 1% standard uncertainty) relative to the reference value determined with the standard IAEA TRS-398 protocol. RESULTS: HT beam dose rate estimation shows a difference of 2% with the value stated by the manufacturer at a 2% standard uncertainty. A 4% deviation between measured dose and the calculation from the tomotherapy TPS was found. The latter was originated by an inadequate representation of the phantom CT-scan values and, consequently, mass densities within the phantom. This difference has been explained by the mass density values given by the CT-scan and used by the TPS which were not the true ones. Once corrected using Monte Carlo N-Particle simulations to validate the accuracy of this process, the difference between corrected TPS calculations and alanine measured dose values was then found to be around 2% (with 2% standard uncertainty on TPS doses and 1.5% standard uncertainty on EPR measurements). CONCLUSION: Beam dose rate estimation results were found to be in good agreement with the reference value given by the manufacturer at 2% standard uncertainty. Moreover, the dose determination method was set up with a deviation around 2% (at a 2% standard uncertainty).


Assuntos
Alanina , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radiometria/métodos , Tomografia Computadorizada Espiral/instrumentação , Calibragem , Doses de Radiação , Reprodutibilidade dos Testes
8.
Radiat Prot Dosimetry ; 131(1): 15-23, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18725380

RESUMO

In the frame of the EU Coordination Action CONRAD (coordinated network for radiation dosimetry), WP4 was dedicated to work on computational dosimetry with an action entitled 'Uncertainty assessment in computational dosimetry: an intercomparison of approaches'. Participants attempted one or more of eight problems. This paper presents the results from problems 4-8-dealing with the overall uncertainty budget estimate; a short overview of each problem is presented together with a discussion of the most significant results and conclusions. The scope of the problems discussed here are: the study of a (137)Cs calibration irradiator; the manganese bath technique; the iron sphere experiment using neutron time-of-flight technique; the energy response of a RADFET detector and finally the sensitivity and uncertainty analysis for the recoil-proton telescope discussed in the companion paper.


Assuntos
Elétrons , Nêutrons , Fótons , Dosagem Radioterapêutica , Radioterapia Assistida por Computador , Incerteza , Algoritmos , Radioisótopos de Césio/química , Humanos , Manganês/química , Radiometria/instrumentação , Radioterapia Assistida por Computador/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA