Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37509353

RESUMO

There is a significant body of research examining the role of human papillomavirus (HPV) in the pathogenesis of cervical cancer, with a particular emphasis on the oncogenic proteins E5, E6, and E7. What is less well explored, however, is the relationship between cervical cancer and herpes simplex virus (HSV). To date, studies examining the role of HSV in cervical cancer pathogenesis have yielded mixed results. While several experiments have determined that HPV/HSV-2 coinfection results in a higher risk of developing cervical cancer, others have questioned the validity of this association. However, clarifying the potential role of HSV in the pathogenesis of cervical cancer may have significant implications for both the prevention and treatment of this disease. Should this relationship be clarified, treating and preventing HSV could open another avenue with which to prevent cervical cancer. The importance of this is highlighted by the fact that, despite the creation of an effective vaccine against HPV, cervical cancer still impacts 604,000 women and is responsible for 342,000 deaths annually. This review provides an overview of HSV and HPV infections and then delves into the possible links between HPV, HSV, and cervical cancer. It concludes with a summary of preventive measures against and recent treatment advances in cervical cancer.

2.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555623

RESUMO

Hepatitis B virus (HBV) and hepatitis delta virus (HDV) are highly prevalent viruses estimated to infect approximately 300 million people and 12-72 million people worldwide, respectively. HDV requires the HBV envelope to establish a successful infection. Concurrent infection with HBV and HDV can result in more severe disease outcomes than infection with HBV alone. These viruses can cause significant hepatic disease, including cirrhosis, fulminant hepatitis, and hepatocellular carcinoma, and represent a significant cause of global mortality. Therefore, a thorough understanding of these viruses and the immune response they generate is essential to enhance disease management. This review includes an overview of the HBV and HDV viruses, including life cycle, structure, natural course of infection, and histopathology. A discussion of the interplay between HDV RNA and HBV DNA during chronic infection is also included. It then discusses characteristics of the immune response with a focus on reactions to the antigenic hepatitis B surface antigen, including small, middle, and large surface antigens. This paper also reviews characteristics of the immune response to the hepatitis D antigen (including small and large antigens), the only protein expressed by hepatitis D. Lastly, we conclude with a discussion of recent therapeutic advances pertaining to these viruses.


Assuntos
Hepatite B , Hepatite D , Humanos , Vírus Delta da Hepatite/genética , Replicação Viral , Vírus da Hepatite B/genética , Hepatite D/epidemiologia , Antígenos de Superfície da Hepatite B/genética
3.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430864

RESUMO

Epstein-Barr virus (EBV) is one of eight known herpesviruses with the potential to infect humans. Globally, it is estimated that between 90-95% of the population has been infected with EBV. EBV is an oncogenic virus that has been strongly linked to various epithelial malignancies such as nasopharyngeal and gastric cancer. Recent evidence suggests a link between EBV and breast cancer. Additionally, there are other, rarer cancers with weaker evidence linking them to EBV. In this review, we discuss the currently known epithelial malignancies associated with EBV. Additionally, we discuss and establish which treatments and therapies are most recommended for each cancer associated with EBV.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Epiteliais e Glandulares , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4 , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/terapia , Nasofaringe
4.
Biomolecules ; 11(9)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34572593

RESUMO

Epstein-Barr virus (EBV) is typically found in a latent, asymptomatic state in immunocompetent individuals. Perturbations of the host immune system can stimulate viral reactivation. Furthermore, there are a myriad of EBV-associated illnesses including various cancers, post-transplant lymphoproliferative disease, and autoimmune conditions. A thorough understanding of this virus, and the interplay between stress and the immune system, is essential to establish effective treatment. This review will provide a summary of the interaction between both psychological and cellular stressors resulting in EBV reactivation. It will examine mechanisms by which EBV establishes and maintains latency and will conclude with a brief overview of treatments targeting EBV.


Assuntos
Herpesvirus Humano 4/fisiologia , Estresse Psicológico/complicações , Latência Viral/fisiologia , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
5.
Sci Rep ; 11(1): 17262, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446808

RESUMO

Unregulated neuro-inflammation mediates seizures in temporal lobe epilepsy (TLE). Our aim was to determine the effect of CD40-CD40L activation in experimental seizures. CD40 deficient mice (CD40KO) and control mice (wild type, WT) received pentenyltetrazole (PTZ) or pilocarpine to evaluate seizures and status epilepticus (SE) respectively. In mice, anti-CD40L antibody was administered intranasally before PTZ. Brain samples from human TLE and post-seizure mice were processed to determine CD40-CD40L expression using histological and molecular techniques. CD40 expression was higher in hippocampus from human TLE and in cortical neurons and hippocampal neural terminals after experimental seizures. CD40-CD40L levels increased after seizures in the hippocampus and in the cortex. After SE, CD40L/CD40 levels increased in cortex and showed an upward trend in the hippocampus. CD40KO mice demonstrated reduction in seizure severity and in latency compared to WT mice. Anti-CD40L antibody limited seizure susceptibility and seizure severity. CD40L-CD40 interaction can serve as a target for an immuno-therapy for TLE.


Assuntos
Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Epilepsia do Lobo Temporal/metabolismo , Convulsões/metabolismo , Animais , Antígenos CD40/genética , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/genética , Predisposição Genética para Doença/genética , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Pentilenotetrazol , Convulsões/induzido quimicamente , Convulsões/genética , Índice de Gravidade de Doença , Estado Epiléptico/metabolismo
6.
Viruses ; 13(8)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34452288

RESUMO

Herpes simplex virus type 1 (HSV-1) is a prevalent human pathogen primarily transmitted through skin-to-skin contact, especially on and around mucosal surfaces where there is contact with contaminated saliva during periods of viral shedding. It is estimated that 90% of adults worldwide have HSV-1 antibodies. Cutaneous HSV-1 infections are characterized by a sensation of tingling or numbness at the initial infection site followed by an eruption of vesicles and then painful ulcers with crusting. These symptoms can take ten days to several weeks to heal, leading to significant morbidity. Histologically, infections cause ballooning degeneration of keratinocytes and formation of multinucleated giant cells, ultimately resulting in a localized immune response. Commonly prescribed treatments against HSV-1 infections are nucleoside analogs, such as acyclovir (ACV). However, the emergence of ACV-resistant HSV (ACVR-HSV) clinical isolates has created an urgent need for the development of compounds to control symptoms of cutaneous infections. RLS-0071, also known as peptide inhibitor of complement C1 (PIC1), is a 15-amino-acid anti-inflammatory peptide that inhibits classical complement pathway activation and modulates neutrophil activation. It has been previously shown to aid in the healing of chronic diabetic wounds by inhibiting the excessive activation of complement component C1 and infiltration of leukocytes. Here, we report that treatment of cutaneous infections of HSV-1 and ACVR-HSV-1 in BALB/cJ mice with RLS-0071 significantly reduced the rate of mortality, decreased zosteriform spread, and enhanced the healing of the infection-associated lesions compared to control-treated animals. Therefore, RLS-0071 may work synergistically with other antiviral drugs to aid in wound healing of HSV-1 cutaneous infection and may potentially aid in rapid wound healing of other pathology not limited to HSV-1.


Assuntos
Inativadores do Complemento/uso terapêutico , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Peptídeos/uso terapêutico , Aciclovir/farmacologia , Animais , Antivirais/farmacologia , Inativadores do Complemento/farmacologia , Farmacorresistência Viral , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 1/genética , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/farmacologia , Timidina Quinase/genética
7.
Cells ; 10(5)2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066434

RESUMO

Viral pathogens often exploit host cell regulatory and signaling pathways to ensure an optimal environment for growth and survival. Several studies have suggested that 5'-adenosine monophosphate-activated protein kinase (AMPK), an intracellular serine/threonine kinase, plays a significant role in the modulation of infection. Traditionally, AMPK is a key energy regulator of cell growth and proliferation, host autophagy, stress responses, metabolic reprogramming, mitochondrial homeostasis, fatty acid ß-oxidation and host immune function. In this review, we highlight the modulation of host AMPK by various viruses under physiological conditions. These intracellular pathogens trigger metabolic changes altering AMPK signaling activity that then facilitates or inhibits viral replication. Considering the COVID-19 pandemic, understanding the regulation of AMPK signaling following infection can shed light on the development of more effective therapeutic strategies against viral infectious diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antivirais/farmacologia , Transdução de Sinais/imunologia , Viroses/imunologia , Antivirais/uso terapêutico , Autofagia/efeitos dos fármacos , Autofagia/imunologia , COVID-19/epidemiologia , COVID-19/imunologia , Proliferação de Células/efeitos dos fármacos , Desenvolvimento de Medicamentos , Humanos , Pandemias/prevenção & controle , SARS-CoV-2/imunologia , Transdução de Sinais/efeitos dos fármacos , Viroses/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia , Tratamento Farmacológico da COVID-19
8.
Sci Rep ; 10(1): 4746, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179788

RESUMO

Ginkgolic acids (GA) are alkylphenol constituents of the leaves and fruits of Ginkgo biloba. GA has shown pleiotropic effects in vitro, including: antitumor effects through inhibition of lipogenesis; decreased expression of invasion associated proteins through AMPK activation; and potential rescue of amyloid-ß (Aß) induced synaptic impairment. GA was also reported to have activity against Escherichia coli and Staphylococcus aureus. Several mechanisms for this activity have been suggested including: SUMOylation inhibition; blocking formation of the E1-SUMO intermediate; inhibition of fatty acid synthase; non-specific SIRT inhibition; and activation of protein phosphatase type-2C. Here we report that GA inhibits Herpes simplex virus type 1 (HSV-1) by inhibition of both fusion and viral protein synthesis. Additionally, we report that GA inhibits human cytomegalovirus (HCMV) genome replication and Zika virus (ZIKV) infection of normal human astrocytes (NHA). We show a broad spectrum of fusion inhibition by GA of all three classes of fusion proteins including HIV, Ebola virus (EBOV), influenza A virus (IAV) and Epstein Barr virus (EBV). In addition, we show inhibition of a non-enveloped adenovirus. Our experiments suggest that GA inhibits virion entry by blocking the initial fusion event. Data showing inhibition of HSV-1 and CMV replication, when GA is administered post-infection, suggest a possible secondary mechanism targeting protein and DNA synthesis. Thus, in light of the strong effect of GA on viral infection, even after the infection begins, it may potentially be used to treat acute infections (e.g. Coronavirus, EBOV, ZIKV, IAV and measles), and also topically for the successful treatment of active lesions (e.g. HSV-1, HSV-2 and varicella-zoster virus (VZV)).


Assuntos
Antivirais/farmacologia , Infecções por Vírus de DNA/metabolismo , Vírus de DNA/efeitos dos fármacos , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/efeitos dos fármacos , Salicilatos/farmacologia , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas Virais de Fusão/antagonistas & inibidores , Animais , Astrócitos/metabolismo , Chlorocebus aethiops , Replicação do DNA/efeitos dos fármacos , Infecções por Vírus de DNA/virologia , Vírus de DNA/genética , DNA Viral/genética , Células HEK293 , Humanos , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Células Vero , Proteínas do Envelope Viral/biossíntese , Proteínas Virais de Fusão/biossíntese , Vírion/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
9.
Nature ; 492(7428): 199-204, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23201684

RESUMO

Although initially viewed as unregulated, increasing evidence suggests that cellular necrosis often proceeds through a specific molecular program. In particular, death ligands such as tumour necrosis factor (TNF)-α activate necrosis by stimulating the formation of a complex containing receptor-interacting protein 1 (RIP1) and receptor-interacting protein 3 (RIP3). Relatively little is known regarding how this complex formation is regulated. Here, we show that the NAD-dependent deacetylase SIRT2 binds constitutively to RIP3 and that deletion or knockdown of SIRT2 prevents formation of the RIP1-RIP3 complex in mice. Furthermore, genetic or pharmacological inhibition of SIRT2 blocks cellular necrosis induced by TNF-α. We further demonstrate that RIP1 is a critical target of SIRT2-dependent deacetylation. Using gain- and loss-of-function mutants, we demonstrate that acetylation of RIP1 lysine 530 modulates RIP1-RIP3 complex formation and TNF-α-stimulated necrosis. In the setting of ischaemia-reperfusion injury, RIP1 is deacetylated in a SIRT2-dependent fashion. Furthermore, the hearts of Sirt2(-/-) mice, or wild-type mice treated with a specific pharmacological inhibitor of SIRT2, show marked protection from ischaemic injury. Taken together, these results implicate SIRT2 as an important regulator of programmed necrosis and indicate that inhibitors of this deacetylase may constitute a novel approach to protect against necrotic injuries, including ischaemic stroke and myocardial infarction.


Assuntos
Necrose/enzimologia , Sirtuína 2/genética , Sirtuína 2/metabolismo , Acetilação , Animais , Linhagem Celular , Feminino , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Masculino , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ligação Proteica , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
10.
Curr Gene Ther ; 6(3): 399-420, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16787191

RESUMO

Amplicon-6 and Tamplicon-7 are novel non-integrating vectors derived from the lymphotropic Human Herpesviruses 6 and 7 (HHV-6 and HHV-7). In the presence of helper viruses the amplicon vectors replicate to yield packaged defective genomes of size approximately 150 kb and consisting of multiple repeat units containing (i) the oriLyt DNA replication origin (ii) the pac-1 and pac-2 cleavage and packaging signals (iii) bacterial plasmid DNA sequences (iv) the chosen transgene(s). Employing CD46 as a receptor HHV-6 gains entry into varied cells, including lymphocytes and dendritic cells, whereas HHV-7 employs the CD4 receptor to target CD4+ cells. The amplicon-based vectors have facilitated the characterization of viral DNA replication and packaging. Following electroporation and helper virus superinfection, the vectors can be transmitted as cell associated and as cell-free virions secreted into the medium. Analyses by flow cytometry have shown good cell spread and efficient gene expression. Exemplary transgenes have included: (i) The Green Fluorescence Protein (GFP) (ii) Genes for potential use in anti-viral vaccination e.g., the HSV-1 glycoprotein D (gD) with and without the trans-membrane region, expressed intracellularly, at the cell membrane or as secreted proteins. (iii) Tumor cell antigens. (iv) Apoptotic genes for development of oncolytic vectors. Due to their cell tropism, their structure as concatemeric genomes, with less than 1.5 kb of viral DNA sequences, the HHV-6 and 7 amplicons have the potential to become unique vectors for immunization and lymphotropic gene therapy.


Assuntos
Amplificação de Genes , Vetores Genéticos/química , Herpesvirus Humano 6/química , Herpesvirus Humano 6/genética , Herpesvirus Humano 7/química , Herpesvirus Humano 7/genética , Vetores Genéticos/metabolismo , Herpesvirus Humano 6/metabolismo , Herpesvirus Humano 7/metabolismo
11.
J Virol ; 78(9): 4730-43, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15078955

RESUMO

The composite amplicon-6 vectors, which are derived from human herpesvirus 6 (HHV-6), can target hematopoietic cells. In the presence of the respective helper viruses, the amplicons are replicated by the rolling circle mechanism, yielding defective genomes of overall size 135 to 150 kb, composed of multiple repeats of units, containing the viral DNA replication origin, packaging signals, and the selected transgene(s). We report the use of amplicon-6 vectors designed for transgene expression in T cells. The selected transgenes included the green fluorescent protein marker, the herpes simplex virus type 1 glycoprotein D (gD), and the gD gene deleted in the transmembrane region (gDsec). The vectors were tested after electroporation and passage in T cells with or without helper HHV-6A superinfections. The results were as follows. (i)The vectors could be passaged both as cell-associated and as cell-free secreted virions infectious to new cells. (ii)The intact gD accumulated at the cell surface, whereas the gDsec was dispersed at internal locations of the cells or was secreted into the medium. (iii)Analyses of amplicon-6-gD expression by flow cytometry have shown significant expression in cultures with reiterated amplicons and helper viruses. The vector has spread to >60% of the cells, and the efficiency of expression per cell increased 15-fold, most likely due to the presence of concatemeric amplicon repeats. Current studies are designed to test whether amplicon-6 vectors can be used for gene therapy in lymphocytes and whether amplicon-6 vectors expressed in T cells and dendritic cells can induce strong cellular and humoral immune responses.


Assuntos
Vetores Genéticos , Vírus Auxiliares/genética , Herpesvirus Humano 6/genética , Linfócitos T/metabolismo , Proteínas do Envelope Viral/metabolismo , Deleção de Genes , Expressão Gênica , Proteínas de Fluorescência Verde , Humanos , Células Jurkat , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas/genética , Proteínas/metabolismo , Transgenes , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA