Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 16363, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31705038

RESUMO

Multiple animal models have been created to gain insight into Alzheimer's disease (AD) pathology. Among the most commonly used models are transgenic mice overexpressing human amyloid precursor protein (APP) with mutations linked to familial AD, resulting in the formation of amyloid ß plaques, one of the pathological hallmarks observed in AD patients. However, recent evidence suggests that the overexpression of APP by itself can confound some of the reported observations. Therefore, we investigated in the present study the AppNL-G-Fmodel, an App knock-in (App-KI) mouse model that develops amyloidosis in the absence of APP-overexpression. Our findings at the behavioral, electrophysiological, and histopathological level confirmed an age-dependent increase in Aß1-42 levels and plaque deposition in these mice in accordance with previous reports. This had apparently no consequences on cognitive performance in a visual discrimination (VD) task, which was largely unaffected in AppNL-G-F mice at the ages tested. Additionally, we investigated neurophysiological functioning of several brain areas by phase-amplitude coupling (PAC) analysis, a measure associated with adequate cognitive functioning, during the VD task (starting at 4.5 months) and the exploration of home environment (at 5 and 8 months of age). While we did not detect age-dependent changes in PAC during home environment exploration for both the wild-type and the AppNL-G-F mice, we did observe subtle changes in PAC in the wild-type mice that were not present in the AppNL-G-F mice.


Assuntos
Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Ondas Encefálicas/fisiologia , Cognição/fisiologia , Modelos Animais de Doenças , Neurônios/patologia , Placa Amiloide/patologia , Animais , Comportamento Animal , Aprendizagem por Discriminação , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Placa Amiloide/metabolismo , Percepção Visual
2.
EMBO J ; 31(10): 2261-74, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22505025

RESUMO

The mechanisms by which mutations in the presenilins (PSEN) or the amyloid precursor protein (APP) genes cause familial Alzheimer disease (FAD) are controversial. FAD mutations increase the release of amyloid ß (Aß)42 relative to Aß40 by an unknown, possibly gain-of-toxic-function, mechanism. However, many PSEN mutations paradoxically impair γ-secretase and 'loss-of-function' mechanisms have also been postulated. Here, we use kinetic studies to demonstrate that FAD mutations affect Aß generation via three different mechanisms, resulting in qualitative changes in the Aß profiles, which are not limited to Aß42. Loss of ɛ-cleavage function is not generally observed among FAD mutants. On the other hand, γ-secretase inhibitors used in the clinic appear to block the initial ɛ-cleavage step, but unexpectedly affect more selectively Notch than APP processing, while modulators act as activators of the carboxypeptidase-like (γ) activity. Overall, we provide a coherent explanation for the effect of different FAD mutations, demonstrating the importance of qualitative rather than quantitative changes in the Aß products, and suggest fundamental improvements for current drug development efforts.


Assuntos
Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Amiloide/metabolismo , Presenilina-1/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Receptores ErbB/metabolismo , Cinética , Receptor ErbB-4 , Receptor Notch1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA