Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36830117

RESUMO

Paracoccidioidomycosis (PCM) is a fungal disease caused by organisms of the genus Paracoccidioides spp. The treatment of the disease is lengthy and includes several adverse effects. Various methodologies focus on the search for new treatments against fungal disease, including the repositioning of drugs. Our group showed the fungicidal effect of mebendazole in P. brasiliensis cells. Thus, understanding the effect of exposing fungal cells to mebendazole is significant for further studies in order to demonstrate it as a potential drug for the treatment of PCM. A proteomic analysis of P. brasiliensis exposed to mebendazole was carried out. Analyses showed that exposure strongly affected the pathways related to energy production, such as glycolysis, fermentation, and the electron transport chain. The quantification of adenosine triphosphate (ATP) and mitochondrial activity demonstrated that the drug alters the electron chain, resulting in an increase in oxidative stress. Enzymes such as superoxide dismutase (SOD) and cytochrome c oxidase (Cyt C) were repressed in cells exposed to mebendazole. The concentration of ethanol produced by the cells under treatment demonstrated that the attempt to produce energy through fermentation is also arrested. Thus, the drug inhibits fungal growth through changes in energy metabolism, making it a promising compound for use in the treatment of PCM.

2.
PLoS Negl Trop Dis ; 15(4): e0009317, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826630

RESUMO

BACKGROUND: Paracoccidioidomycosis (PCM) is a systemic and endemic fungal infection in Latin American, mainly in Brazil. The majority of PCM cases occur in large areas in Brazil, comprising the South, Southeast and Midwest regions, with the latter demonstrating a higher incidence of the species Paracoccidioides lutzii. METHODOLOGY AND MAIN FINDINGS: This study presents clinical, molecular and serological data of thirteen new PCM cases during 2016 to 2019 from the state of Mato Grosso do Sul, located in the Midwest region, Brazil. From these thirteen cases, sixteen clinical isolates were obtained and their genomic DNAs were subjected to genotyping by tub1 -PCR-RFLP. Results showed Paracoccidioides brasiliensis sensu stricto (S1) (11/16; 68.8%), Paracoccidioides restrepiensis (PS3) (4/16; 25.0%) and P. lutzii (1/16; 6.2%) as Paracoccidiodes species. Therefore, in order to understand whether the type of phylogenetic species that are circulating in the state influence the reactivity profile of serological tests, we performed double agar gel immunodiffusion (DID), using exoantigens from genotyped strains found in this series of PCM cases. Overall, our DID tests have been false negative in about 30% of confirmed PCM cases. All patients were male, most with current or previous rural activity, with ages ranging from 17 to 59 years, with 11 patients (84.6%) over 40 years of age. No clinical or epidemiological differences were found between Paracoccidioides species. However, it is important to note that the only case of P. lutzii died as an outcome. CONCLUSIONS: This study suggests P. brasiliensis sensu stricto (S1) as the predominant species, showing its wide geographic distribution in Brazil. Furthermore, our findings revealed, for the first time, the occurrence of P. restrepiensis (PS3) in the state of Mato Grosso do Sul, Brazil. Despite our setbacks, it would be interesting to provide the complete sequencing of these clinical isolates to complement the molecular information presented.


Assuntos
Antígenos de Fungos/imunologia , Paracoccidioides/imunologia , Paracoccidioidomicose/imunologia , Paracoccidioidomicose/microbiologia , Adolescente , Adulto , Anticorpos Antifúngicos/imunologia , Brasil/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Paracoccidioides/classificação , Paracoccidioides/isolamento & purificação , Paracoccidioidomicose/diagnóstico , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Sorotipagem , Adulto Jovem
3.
Microb Pathog ; 154: 104864, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33771629

RESUMO

Paracoccidioidomycosis (PCM) is a systemic fungal disease caused by Paracoccidioides spp., whose clinical outcome depends on immune response. Interleukin 32 (IL-32) is a cytokine present in inflammatory and infectious diseases, including bacterial, virus and protozoan infections. Its role in fungal disease remains unclear. The axis IL-15, IL-32 and vitamin D leads to microbicidal capacity against intracellular pathogens. Thus, the aims of this study were to investigate the production of IL-32 during Paracoccidioides spp. infection and whether this cytokine and IL-15 can increase P. brasiliensis control in a vitamin D dependent manner. IL-32 was highly detected in oral lesions from patients with PCM. In addition, high production of this cytokine was intracellularly detected in peripheral blood mononuclear cells (PBMCs) from healthy donors after exposure to particulated P. brasiliensis antigens (PbAg). The IL-32γ isoform was predominantly expressed, but there was mRNA alternative splicing for IL-32α isoform. The induction of IL-32 was dependent on Dectin-1 receptor. Infection of PBMCs with P. brasiliensis yeasts did not significantly induce IL-32 production even after activation with exogenous IFN-γ or IL-15 treatments. Although IL-15 was a potent inducer of IL-32 production, treatment with this cytokine did not increase the fungal control unless vitamin D was present in high levels. In this case, both IL-15 and IL-32 increased fungicidal activity of PBMCs. Together, data showed that IL-32 is present in lesions of PCM, PbAg induces IL-32, and the axis of IL-15/IL-32/vitamin D can contribute to control fungal infection. The data suggest that exposure to molecules from P. brasiliensis, as ß-glucans, is needed to induce IL-32 production since only heat-killed and sonicated P. brasiliensis yeasts were able to increase IL-32, which was blocked by anti-Dectin-1 antibodies. This is the first description about IL-15/IL-32/vitamin D pathway role in P. brasiliensis infection.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Humanos , Interleucina-15 , Interleucinas , Leucócitos Mononucleares , Vitamina D
4.
Microbes Infect ; 21(10): 456-463, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31075417

RESUMO

Staphylococcus saprophyticus is a gram-positive coagulase negative bacteria which shows clinical importance due to its capability of causing urinary tract infections (UTI), as well as its ability to persist in this environment. Little is known about how S. saprophyticus adapts to the pH shift that occurs during infection. Thus, in this study we aim to use a proteomic approach to analyze the metabolic adaptations which occur as a response by S. saprophyticus when exposed to acid (5.5) and alkaline (9.0) pH environments. Proteins related to iron storage are overexpressed in acid pH, whilst iron acquisition proteins are overexpressed in alkaline pH. It likely occurs because iron is soluble at acid pH and insoluble at alkaline pH. To evaluate if S. saprophyticus synthesizes siderophores, CAS assays were performed, and the results confirmed their production. The chemical characterization of siderophores demonstrates that S. saprophyticus produces carboxylates derived from citrate. Of special note is the fact that citrate synthase (CS) is down-regulated during incubation at acid pH, corroborating this result. This data was also confirmed by enzymatic assay. Our results demonstrate that iron metabolism regulation is influenced by different pH levels, and show, for the first time, the production of siderophores by S. saprophyticus. Enzymatic assays suggest that citrate from the tricarboxylic acid cycle (TCA) is used as substrate for siderophore production.


Assuntos
Ferro/metabolismo , Sideróforos/metabolismo , Staphylococcus saprophyticus/metabolismo , Animais , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Linhagem Celular , Citrato (si)-Sintase/metabolismo , Ácido Cítrico/metabolismo , Concentração de Íons de Hidrogênio , Deficiências de Ferro , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana , Óperon/genética , Proteômica , Sideróforos/química , Sideróforos/genética , Staphylococcus saprophyticus/genética , Staphylococcus saprophyticus/crescimento & desenvolvimento
5.
Front Microbiol ; 10: 96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804901

RESUMO

Although members of the Paracoccidioides complex are not obligate intracellular pathogens, they present the ability to survive and multiply inside epithelial cells and phagocytes of mammals, which may favor the spread of the fungus in host tissues. Macrophages resident in the lung are the first line of defense against paracoccidioidomycosis (PCM), presenting mechanisms to control the pathogen dissemination through the granuloma formation or eliminating the fungus through phagocytosis. Phagocytosis triggers an oxidative burst, in which there is an increase in the production of toxic elements, derived from oxygen and nitrogen. The interior of the phagolysosome is a harsh environment to the internalized pathogens, since in addition to the oxygen and nitrogen reactive species, microorganisms face nutrient shortages and proteases activity. Through the NanoUPLC-MS E technology, we analyzed the proteomic response of Paracoccidioides brasiliensis during the infection of alveolar macrophages primed or not by interferon gamma (IFN-γ). At 6 hs post-infection, only (IFN-γ)-primed macrophages were able to kill the fungus. We observed the regulation of amino acids degradation, tricarboxylic acid cycle, respiratory chain, ATP synthesis, glyoxylate cycle, as well as an increase in the expression of defense proteins related to oxidative stress, heat shock, and virulence factors under both conditions analyzed. However, some pathways described as essential for the survival of pathogens inside macrophages were observed only or with higher intensity in yeast cells recovered from non-primed macrophages, as phosphate pentoses pathway, methylcitrate cycle, synthesis of cell wall components, and mitochondrial activity. The data indicate that the intracellular environment of non-primed macrophages could be more permissive to the survival and multiplication of P. brasiliensis. The identification of key molecules for the establishment of infection can help the understanding of the nature of the parasite-host relationship and pathogenesis of PCM.

6.
Rev. Soc. Bras. Med. Trop ; 52: e20180001, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1041589

RESUMO

Abstract INTRODUCTION: Studies have demonstrated that pathogens react to the harsh conditions in human tissues by inducing mechanisms that promote survival. METHODS: Persistence and biofilm-forming ability were evaluated during stress conditions that mimic those in the host. RESULTS: Carbon-source availability had a positive effect on Staphylococcus epidermidis RP62A adhesion during hypoxia, accompanied by a decrease in pH. In contrast, iron limitation led to decreased surface-adherent biomass, accompanied by an increase medium acidification and lactate levels. Interestingly, iron starvation and hypoxia induced persister cells in planktonic culture. CONCLUSIONS: These findings highlight the role of host stress in the virulence of S. epidermidis.


Assuntos
Humanos , Staphylococcus epidermidis/fisiologia , Virulência/fisiologia , Biofilmes/crescimento & desenvolvimento , Meios de Cultura/farmacologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/patogenicidade , Estresse Fisiológico , Virulência/efeitos dos fármacos , Bioensaio , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos
7.
Artigo em Inglês | MEDLINE | ID: mdl-30150478

RESUMO

Paracoccidioidomycosis (PCM) is the cause of many deaths from systemic mycoses. The etiological agents of PCM belong to the Paracoccidioides genus, which is restricted to Latin America. The infection is acquired through the inhalation of conidia that primarily lodge in the lungs and may disseminate to other organs and tissues. The treatment for PCM is commonly performed via the administration of antifungals such as amphotericin B, co-trimoxazole, and itraconazole. The antifungal toxicity and side effects, in addition to their long treatment times, have stimulated research for new bioactive compounds. Argentilactone is a compound that was isolated from the Brazilian savanna plant Hyptis ovalifolia, and it has been suggested to be a potent antifungal, inhibiting the dimorphism of P. brasiliensis and the enzymatic activity of isocitrate lyase, a key enzyme of the glyoxylate cycle. This work was developed due to the importance of elucidating the putative mode of action of argentilactone. The chemoproteomics approach via affinity chromatography was the methodology used to explore the interactions between P. brasiliensis proteins and argentilactone. A total of 109 proteins were identified and classified functionally. The most representative functional categories were related to amino acid metabolism, energy, and detoxification. Argentilactone inhibited the enzymatic activity of malate dehydrogenase, citrate synthase, and pyruvate dehydrogenase. Furthermore, argentilactone induces the production of reactive oxygen species and inhibits the biosynthesis of cell wall polymers.


Assuntos
Antifúngicos/farmacologia , Lactonas/farmacologia , Paracoccidioides/efeitos dos fármacos , Paracoccidioidomicose/tratamento farmacológico , Células A549 , Anfotericina B/farmacologia , Brasil , Linhagem Celular Tumoral , Parede Celular/efeitos dos fármacos , Humanos , Itraconazol/farmacologia
8.
Fungal Biol ; 122(8): 738-751, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30007425

RESUMO

Paracoccidioides is a thermodimorphic fungus that causes Paracoccidioidomycosis (PCM) - an endemic systemic mycosis in Latin America. The genus comprises several phylogenetic species which present some genetic and serological differences. The diversity presented among isolates of the same genus has been explored in several microorganisms. There have also been attempts to clarify differences that might be related to virulence existing in isolates that cause the same disease. In this work, we analyzed the secretome of two isolates in the Paracoccidioides genus, isolates Pb01 and PbEpm83, and performed infection assays in macrophages to evaluate the influence of the secretomes of those isolates upon an in vitro model of infection. The use of a label-free proteomics approach (LC-MSE) allowed us to identify 92 proteins that are secreted by those strains. Of those proteins, 35 were differentially secreted in Pb01, and 36 in PbEpm83. According to the functional annotation, most of the identified proteins are related to adhesion and virulence processes. These results provide evidence that different members of the Paracoccidioides complex can quantitatively secrete different proteins, which may influence the characteristics of virulence, as well as host-related processes.


Assuntos
Proteínas Fúngicas/análise , Paracoccidioides/química , Proteoma/análise , Animais , Linhagem Celular , Cromatografia Líquida , América Latina , Macrófagos/microbiologia , Espectrometria de Massas , Camundongos , Modelos Biológicos , Paracoccidioides/crescimento & desenvolvimento , Paracoccidioides/isolamento & purificação , Paracoccidioidomicose/microbiologia , Fatores de Virulência/análise
9.
Fungal Biol ; 122(6): 505-513, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29801795

RESUMO

Members of the Paracoccidioides complex are human pathogens that infect different anatomic sites in the host. The ability of Paracoccidioides spp. to infect host niches is putatively supported by a wide range of virulence factors, as well as fitness attributes that may comprise the transition from mycelia/conidia to yeast cells, response to deprivation of micronutrients in the host, expression of adhesins on the cell surface, response to oxidative and nitrosative stresses, as well as the secretion of hydrolytic enzymes in the host tissue. Our understanding of how those molecules can contribute to the infection establishment has been increasing significantly, through the utilization of several models, including in vitro, ex vivo and in vivo infection in animal models. In this review we present an update of our understanding on the strategies used by the pathogen to establish infection. Our results were obtained through a comparative proteomic analysis of Paracoccidioides spp. in models of infection.


Assuntos
Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Paracoccidioides/metabolismo , Paracoccidioides/patogenicidade , Paracoccidioidomicose/microbiologia , Fatores de Virulência/metabolismo , Animais , Humanos , Camundongos , Estresse Nitrosativo , Estresse Oxidativo , Proteômica/métodos , Esporos Fúngicos/metabolismo
10.
Virulence ; 8(7): 1417-1434, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28704618

RESUMO

Paracoccidoides brasiliensis and Paracoccidioides lutzii, the etiologic agents of paracoccidioidomycosis, cause disease in healthy and immunocompromised persons in Latin America. We developed a method for harvesting P. brasiliensis yeast cells from infected murine lung to facilitate in vivo transcriptional and proteomic profiling. P. brasiliensis harvested at 6 h post-infection were analyzed using RNAseq and LC-MSE. In vivo yeast cells had 594 differentially expressed transcripts and 350 differentially expressed proteins. Integration of transcriptional and proteomic data indicated that early in infection (6 h), P. brasiliensis yeast cells underwent a shift in metabolism from glycolysis to ß-oxidation, upregulated detoxifying enzymes to defend against oxidative stress, and repressed cell wall biosynthesis. Bioinformatics and functional analyses also demonstrated that a serine proteinase was upregulated and secreted in vivo. To our knowledge this is the first study depicting transcriptional and proteomic data of P. brasiliensis yeast cells upon 6 h post-infection of mouse lung.


Assuntos
Proteínas Fúngicas/metabolismo , Paracoccidioides/fisiologia , Paracoccidioidomicose/microbiologia , Serina Proteases/metabolismo , Animais , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Paracoccidioides/enzimologia , Paracoccidioides/genética , Transporte Proteico , Proteômica , Serina Proteases/genética
11.
PLoS One ; 10(9): e0137619, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26360774

RESUMO

Macrophages are key players during Paracoccidioides brasiliensis infection. However, the relative contribution of the fungal response to counteracting macrophage activity remains poorly understood. In this work, we evaluated the P. brasiliensis proteomic response to macrophage internalization. A total of 308 differentially expressed proteins were detected in P. brasiliensis during infection. The positively regulated proteins included those involved in alternative carbon metabolism, such as enzymes involved in gluconeogenesis, beta-oxidation of fatty acids and amino acids catabolism. The down-regulated proteins during P. brasiliensis internalization in macrophages included those related to glycolysis and protein synthesis. Proteins involved in the oxidative stress response in P. brasiliensis yeast cells were also up-regulated during macrophage infection, including superoxide dismutases (SOD), thioredoxins (THX) and cytochrome c peroxidase (CCP). Antisense knockdown mutants evaluated the importance of CCP during macrophage infection. The results suggested that CCP is involved in a complex system of protection against oxidative stress and that gene silencing of this component of the antioxidant system diminished the survival of P. brasiliensis in macrophages and in a murine model of infection.


Assuntos
Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Estresse Oxidativo , Paracoccidioides/metabolismo , Animais , Linhagem Celular , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Regulação para Baixo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicólise , Camundongos , Paracoccidioides/genética , Paracoccidioides/patogenicidade , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
12.
Fungal Genet Biol ; 60: 87-100, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23911955

RESUMO

The genus Paracoccidioides comprises a complex of phylogenetic species of dimorphic pathogenic fungi, the etiologic agents of paracoccidioidomycosis (PCM), a disease confined to Latin America and of marked relevance in its endemic areas due to its high frequency and severity. The members of the Paracoccidioides genus are distributed in distinct phylogenetic species (S1, PS2, PS3 and 01-like) that potentially differ in their biochemical and molecular characteristics. In this work, we performed the proteomic characterization of different members of the genus Paracoccidioides. We compared the proteomic profiles of Pb01 (01-like), Pb2 (PS2), Pb339 (S1) and PbEPM83 (PS3) using 2D electrophoresis and mass spectrometry. The proteins/isoforms were selected based on the staining intensity of the spots as determined by image analysis. The proteins/isoforms were in-gel digested and identified by peptide mass fingerprinting and ion fragmentation. A total of 714 spots were detected, of which 343 were analyzed. From these spots, 301 represented differentially expressed proteins/isoforms among the four analyzed isolates, as determined by ANOVA. After applying the FDR correction, a total of 267 spots were determined to be differentially expressed. From the total, 193 proteins/isoforms were identified by PMF and confirmed by ion fragmentation. Comparing the expression profiles of the isolates, the proteins/isoforms that were related to glycolysis/gluconeogenesis and to alcohol fermentation were more abundant in Pb01 than in other representatives of the genus Paracoccidioides, indicating ahigher use of anaerobic pathways for energy production. Those enzymes related to the oxidative stress response were more abundant in Pb01, Pb2 and Pb339, indicating a better response to ROS in these members of the Paracoccidioides complex. The enzymes of the pentose phosphate pathway were abundant in Pb2. Antigenic proteins, such as GP43 and a 27-kDa antigenic protein, were less abundant in Pb01 and Pb2. The proteomic profile indicates metabolic differences among the analyzed members of the Paracoccidioides genus.


Assuntos
Proteínas Fúngicas/análise , Paracoccidioidomicose/genética , Paracoccidioidomicose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Resposta ao Choque Térmico/genética , Estresse Oxidativo/genética , Paracoccidioides/classificação , Paracoccidioides/genética , Mapeamento de Peptídeos , Filogenia , Proteoma
13.
PLoS One ; 7(12): e52470, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23272246

RESUMO

Paracoccidioides, a complex of several phylogenetic species, is the causative agent of paracoccidioidomycosis. The ability of pathogenic fungi to develop a multifaceted response to the wide variety of stressors found in the host environment is important for virulence and pathogenesis. Extracellular proteins represent key mediators of the host-parasite interaction. To analyze the expression profile of the proteins secreted by Paracoccidioides, Pb01 mycelia and yeast cells, we used a proteomics approach combining two-dimensional electrophoresis with matrix-assisted laser desorption ionization quadrupole time-of-flight mass spectrometry (MALDI-Q-TOF MS/MS). From three biological replicates, 356 and 388 spots were detected, in mycelium and yeast cell secretomes, respectively. In this study, 160 non-redundant proteins/isoforms were indentified, including 30 and 24 proteins preferentially secreted in mycelia and yeast cells, respectively. In silico analyses revealed that 65% of the identified proteins/isoforms were secreted primarily via non-conventional pathways. We also investigated the influence of protein export inhibition in the phagocytosis of Paracoccidioides by macrophages. The addition of Brefeldin A to the culture medium significantly decreased the production of secreted proteins by both Paracoccidioides and internalized yeast cells by macrophages. In contrast, the addition of concentrated culture supernatant to the co-cultivation significantly increased the number of internalized yeast cells by macrophages. Importantly, the proteins detected in the fungal secretome were also identified within macrophages. These results indicate that Paracoccidioides extracellular proteins are important for the fungal interaction with the host.


Assuntos
Proteínas Fúngicas/metabolismo , Paracoccidioides/metabolismo , Proteoma/metabolismo , Animais , Adesão Celular , Ativação Enzimática , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Micélio/metabolismo , Paracoccidioides/genética , Paracoccidioides/imunologia , Fagocitose/imunologia , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional , Proteômica , Leveduras/genética , Leveduras/metabolismo
14.
Methods Mol Biol ; 845: 381-96, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22328389

RESUMO

Transcript profiling is an invaluable strategy to study differential gene expression. Here we describe a detailed protocol for applying a subtractive hybridization technique, representational difference analysis (RDA), as a molecular strategy for the identification of differentially expressed genes in studies of host-fungus interaction. Bioinformatics tools that can be used in the analysis of expressed sequence tags (ESTs) are also detailed.


Assuntos
Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Paracoccidioides/genética , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/microbiologia , Animais , Biologia Computacional , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Paracoccidioides/imunologia , Paracoccidioides/fisiologia , Paracoccidioidomicose/imunologia , Paracoccidioidomicose/microbiologia
15.
Front Microbiol ; 2: 49, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21833306

RESUMO

Iron, copper, and zinc are essential for all living organisms. Moreover, the homeostasis of these metals is vital to microorganisms during pathogenic interactions with a host. Most pathogens have developed specific mechanisms for the uptake of micronutrients from their hosts in order to counteract the low availability of essential ions in infected tissues. We report here an analysis of genes potentially involved in iron, copper, and zinc uptake and homeostasis in the fungal pathogens Paracoccidioides brasiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii. Although prior studies have identified certain aspects of metal regulation in Cryptococcus species, little is known regarding the regulation of these elements in P. brasiliensis. We also present amino acid sequences analyses of deduced proteins in order to examine possible conserved domains. The genomic data reveals, for the first time, genes associated to iron, copper, and zinc assimilation and homeostasis in P. brasiliensis. Furthermore, analyses of the three fungal species identified homologs to genes associated with high-affinity uptake systems, vacuolar and mitochondrial iron storage, copper uptake and reduction, and zinc assimilation. However, homologs to genes involved in siderophore production were only found in P. brasiliensis. Interestingly, in silico analysis of the genomes of P. brasiliensisPb01, Pb03, and Pb18 revealed significant differences in the presence and/or number of genes involved in metal homeostasis, such as in genes related to iron reduction and oxidation. The broad analyses of the genomes of P. brasiliensis, C. neoformans var. grubii, and C. gattii for genes involved in metal homeostasis provide important groundwork for numerous interesting future areas of investigation that are required in order to validate and explore the function of the identified genes and gene pathways.

16.
Mycopathologia ; 171(1): 1-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20669049

RESUMO

Paracoccidioides brasiliensis, a fungal pathogen of humans, switches from a filamentous spore-forming mold in the soil to a pathogenic budding-yeast in the human host. Dimorphism is regulated mainly by the temperature of incubation. Representational difference analysis (RDA) was performed between yeast cells of isolate Pb01 and from isolate Pb4940, the last growing as mycelia at the host temperature. Transcripts exhibiting increased expression during development of the yeast parasitic phase comprised those involved mainly in response to stress, transcriptional regulation and nitrogen metabolism. In this way, the isolate Pb01 increased the expression of a variety of transcripts encoding cell rescue proteins such as the heat shock protein HSP30, alpha-trehalose-phosphate synthase and DDR48 stress protein, suggesting the relevance of the defense mechanism against oxidative/heat shock stress in the fungal yeast phase. Other differentially expressed genes between the two isolates included those coding for cell wall/membrane-related proteins, suggesting the relevance of the fungal surface and it's remodeling to the dimorphism. We provide a set of novel yeast preferentially expressed genes and demonstrate the effectiveness of RDA for studying P. brasiliensis dimorphism.


Assuntos
Genes Fúngicos , Paracoccidioides/genética , Paracoccidioides/patogenicidade , Paracoccidioidomicose/microbiologia , Microbiologia do Solo , Fatores de Virulência/genética , Expressão Gênica , Perfilação da Expressão Gênica , Biblioteca Gênica , Humanos , Regulação para Cima , Fatores de Virulência/metabolismo
17.
Mem. Inst. Oswaldo Cruz ; 104(3): 486-491, May 2009. ilus
Artigo em Inglês | LILACS | ID: lil-517022

RESUMO

Paracoccidioides brasiliensis causes infection through inhalation by the host of airborne propagules from the mycelium phase of the fungus. This fungus reaches the lungs, differentiates into the yeast form and is then disseminated to virtually all parts of the body. Here we review the identification of differentially-expressed genes in host-interaction conditions. These genes were identified by analyzing expressed sequence tags (ESTs) from P. brasiliensis cDNA libraries. The P. brasiliensis was recovered from infected mouse liver as well as from fungal yeast cells incubated in human blood and plasma, mimicking fungal dissemination to organs and tissues and sites of infection with inflammation, respectively. In addition, ESTs from a cDNA library of P. brasiliensis mycelium undergoing the transition to yeast were previously analyzed. Together, these studies reveal significant changes in the expression of a number of genes of potential importance in the host-fungus interaction. In addition, the unique and divergent representation of transcripts when the cDNA libraries are compared suggests differential gene expression in response to specific niches in the host. This analysis of gene expression patterns provides details about host-pathogen interactions and peculiarities of sites within the host.


Assuntos
Animais , Humanos , Camundongos , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/genética , Interações Hospedeiro-Patógeno/genética , Paracoccidioides/genética , DNA Complementar/análise , Biblioteca Gênica , Fígado/microbiologia , Paracoccidioides/patogenicidade
18.
Genet. mol. biol ; 30(1,suppl): 212-218, 2007. tab, ilus
Artigo em Inglês | LILACS | ID: lil-450436

RESUMO

Mycoplasmas are the smallest known prokaryotes with self-replication ability. They are obligate parasites, taking up many molecules of their hosts and acting as pathogens in men, animals, birds and plants. Mycoplasma hyopneumoniae is the infective agent of swine mycoplasmosis and Mycoplasma synoviae is responsible for subclinical upper respiratory infections that may result in airsacculitis and synovitis in chickens and turkeys. These highly infectious organisms present a worldwide distribution and are responsible for major economic problems. Proteins of the GTPase superfamily occur in all domains of life, regulating functions such as protein synthesis, cell cycle and differentiation. Despite their functional diversity, all GTPases are believed to have evolved from a single common ancestor. In this work we have identified mycoplasma GTPases by searching the complete genome databases of Mycoplasma synoviae and Mycoplasma hyopneumoniae, J (non-pathogenic) and 7448 (pathogenic) strains. Fifteen ORFs encoding predicted GTPases were found in M. synoviae and in the two strains of M. hyopneumoniae. Searches for conserved G domains in GTPases were performed and the sequences were classified into families. The GTPase phylogenetic analysis showed that the subfamilies were well resolved into clades. The presence of GTPases in the three strains suggests the importance of GTPases in 'minimalist' genomes.

19.
Microbes Infect ; 8(12-13): 2686-97, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16962356

RESUMO

Paracoccidioides brasiliensis causes infection by the host inhalation of airborne propagules of the mycelia phase of the fungus. These particles reach the lungs, and disseminate to virtually all organs. Here we describe the identification of differentially expressed genes in studies of host-fungus interaction. We analyzed two cDNA populations of P. brasiliensis, one obtained from infected animals and the other an admixture of fungus and human blood thus mimicking the hematologic events of the fungal dissemination. Our analysis identified transcripts differentially expressed. Genes related to iron acquisition, melanin synthesis and cell defense were specially upregulated in the mouse model of infection. The upregulated transcripts of yeast cells during incubation with human blood were those predominantly related to cell wall remodeling/synthesis. The expression pattern of genes was independently confirmed in host conditions, revealing their potential role in the infection process. This work can facilitate functional studies of novel regulated genes that may be important for the survival and growth strategies of P. brasiliensis in humans.


Assuntos
Regulação Fúngica da Expressão Gênica , Paracoccidioides/genética , Paracoccidioides/patogenicidade , Paracoccidioidomicose/microbiologia , Adaptação Fisiológica/genética , Animais , Northern Blotting , DNA Complementar , Etiquetas de Sequências Expressas , Fungemia/microbiologia , Perfilação da Expressão Gênica , Biblioteca Gênica , Genes Fúngicos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Hibridização de Ácido Nucleico , Paracoccidioides/fisiologia , RNA Fúngico/biossíntese , RNA Fúngico/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA