RESUMO
BACKGROUND: Autophagy is intensively studied in cancer, metabolic and neurodegenerative diseases, but little is known about its role in pathological conditions linked to altered neurotransmission. We examined the involvement of autophagy in levodopa (l-dopa)-induced dyskinesia, a frequent motor complication developed in response to standard dopamine replacement therapy in parkinsonian patients. METHODS: We used mouse and non-human primate models of Parkinson's disease to examine changes in autophagy associated with chronic l-dopa administration and to establish a causative link between impaired autophagy and dyskinesia. RESULTS: We found that l-dopa-induced dyskinesia is associated with accumulation of the autophagy-specific substrate p62, a marker of autophagy deficiency. Increased p62 was observed in a subset of projection neurons located in the striatum and depended on l-dopa-mediated activation of dopamine D1 receptors, and mammalian target of rapamycin. Inhibition of mammalian target of rapamycin complex 1 with rapamycin counteracted the impairment of autophagy produced by l-dopa, and reduced dyskinesia. The anti-dyskinetic effect of rapamycin was lost when autophagy was constitutively suppressed in D1 receptor-expressing striatal neurons, through inactivation of the autophagy-related gene protein 7. CONCLUSIONS: These findings indicate that augmented responsiveness at D1 receptors leads to dysregulated autophagy, and results in the emergence of l-dopa-induced dyskinesia. They further suggest the enhancement of autophagy as a therapeutic strategy against dyskinesia. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Discinesia Induzida por Medicamentos , Transtornos Parkinsonianos , Animais , Antiparkinsonianos/toxicidade , Autofagia , Corpo Estriado , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/etiologia , Humanos , Levodopa/toxicidade , Camundongos , OxidopaminaRESUMO
The antipsychotic agent haloperidol regulates gene transcription in striatal medium spiny neurons (MSNs) by blocking dopamine D2 receptors (D2Rs). We examined the mechanisms by which haloperidol increases the phosphorylation of histone H3, a key step in the nucleosomal response. Using bacterial artificial chromosome (BAC)-transgenic mice that express EGFP under the control of the promoter of the dopamine D1 receptor (D1R) or the D2R, we found that haloperidol induced a rapid and sustained increase in the phosphorylation of histone H3 in the striatopallidal MSNs of the dorsal striatum, with no change in its acetylation. This effect was mimicked by raclopride, a selective D2R antagonist, and prevented by the blockade of adenosine A2A receptors (A2ARs), or genetic attenuation of the A2AR-associated G protein, Galpha(olf). Mutation of the cAMP-dependent phosphorylation site (Thr34) of the 32-kDa dopamine and cAMP-regulated phosphoprotein (DARPP-32) decreased the haloperidol-induced H3 phosphorylation, supporting the role of cAMP in H3 phosphorylation. Haloperidol also induced extracellular signal-regulated kinase (ERK) phosphorylation in striatopallidal MSNs, but this effect was not implicated in H3 phosphorylation. The levels of mitogen- and stress-activated kinase 1 (MSK1), which has been reported to mediate ERK-induced H3 phosphorylation, were lower in striatopallidal than in striatonigral MSNs. Moreover, haloperidol-induced H3 phosphorylation was unaltered in MSK1-knockout mice. These data indicate that, in striatopallidal MSNs, H3 phosphorylation is controlled by the opposing actions of D2Rs and A2ARs. Thus, blockade of D2Rs promotes histone H3 phosphorylation through the A2AR-mediated activation of Galpha(olf) and inhibition of protein phosphatase-1 (PP-1) through the PKA-dependent phosphorylation of DARPP-32.
Assuntos
Corpo Estriado/citologia , Histonas/metabolismo , Neurônios/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo , Acetilação/efeitos dos fármacos , Antagonistas do Receptor A2 de Adenosina , Análise de Variância , Animais , Antagonistas de Dopamina/farmacologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/deficiência , Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Haloperidol/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Purinas/farmacologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Treonina/metabolismoRESUMO
LRRK2, alpha-synuclein, UCH-L1 and DJ-1 are implicated in the etiology of Parkinson's disease. We show for the first time that increase in striatal alpha-synuclein levels induce increased Lrrk2 mRNA levels while Dj-1 and Uch-L1 are unchanged. We also demonstrate that a mouse strain lacking the dopamine signaling molecule DARPP-32 has significantly reduced levels of both Lrrk2 and alpha-synuclein, while mice carrying a disabling mutation of the DARPP-32 phosphorylation site T34A or lack alpha-synuclein do not show any changes. To test if striatal dopamine depletion influences Lrrk2 or alpha-synuclein expression, we used the neurotoxin 6-hydroxydopamine in rats and MitoPark mice in which there is progressive degeneration of dopamine neurons. Because striatal Lrrk2 and alpha-synuclein levels were not changed by dopamine depletion, we conclude that Lrrk2 and alpha-synuclein mRNA levels are possibly co-regulated, but they are not influenced by striatal dopamine levels.
Assuntos
Corpo Estriado/metabolismo , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , alfa-Sinucleína/metabolismo , Animais , Corpo Estriado/anatomia & histologia , Dopamina/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Oxidopamina/metabolismo , Doença de Parkinson/etiologia , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Sprague-Dawley , alfa-Sinucleína/genéticaRESUMO
Exposure to cues previously associated with intake of substances of abuse can promote drug related responses. In this study, we have examined the effect of exposure to a drug-associated context on the expression of morphine psychomotor sensitization. We show that sensitization is markedly increased in mice examined 4 weeks after the last morphine injection. In addition, this incubation period confers to the environment paired with morphine the ability to increase ERK phosphorylation in the shell (but not the core) of the nucleus accumbens. Using transgenic mice with enhanced green fluorescent protein (EGFP) expression under the control of the dopamine D1 receptor (D1R) (Drd1a-EGFP) or D2 receptor promoter (Drd2-EGFP) we show that context-dependent ERK phosphorylation is restricted to D1R-expressing medium spiny neurons. Furthermore, this effect depends on D1R activation. These data show that, following repeated morphine injections, a drug-free period induces context-dependent phosphorylation of ERK in a specific population of neurons within the nucleus accumbens shell. This activation is associated to enhanced psychomotor sensitization and may be implicated in context-elicited drug seeking induced by repeated exposure to drugs of abuse.
Assuntos
Analgésicos Opioides/administração & dosagem , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Dependência de Morfina/enzimologia , Morfina/administração & dosagem , Receptores de Dopamina D1/metabolismo , Animais , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/anatomia & histologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/enzimologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Fatores de TempoRESUMO
Rhes is a small GTP-binding protein prominently localized in the striatum. Previous findings obtained in cell culture systems demonstrated an involvement of Rhes in cAMP/PKA signalling pathway, at a level proximal to the activation of heterotrimeric G-protein complex. However, its role in the striatum has been, so far, only supposed. Here we studied the involvement of Rhes in dopaminergic signalling, by employing mice with a null mutation in the Rhes gene. We demonstrated that the absence of Rhes modulates cAMP/PKA signalling in both striatopallidal and striatonigral projection neurons by increasing Golf protein levels and, in turn, influencing motor responses challenged by dopaminergic agonist/antagonist. Interestingly, we also show that Rhes is required for a correct dopamine-mediated GTP binding, a function mainly associated to stimulation of dopamine D2 receptors. Altogether, our results indicate that Rhes is an important modulator of dopaminergic transmission in the striatum.
Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Proteínas de Ligação ao GTP/genética , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Corpo Estriado/citologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espinhas Dendríticas/metabolismo , Feminino , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Hipercinese/genética , Hipercinese/metabolismo , Hipercinese/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Neurônios/citologia , Técnicas de Cultura de Órgãos , Fenótipo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Sinapses/metabolismoRESUMO
CB1 receptor agonists increase the state of phosphorylation of the dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) at the cAMP-dependent protein kinase site, Thr 34. This effect, which occurs in the medium spiny neurons of the striatum, has been proposed to mediate the motor depressant action of cannabinoids. In this study, we have examined the effect produced by systemic administration of Delta(9)-tetrahydrocannabinol (THC), the major component of marihuana and hashish, on DARPP-32. We show that THC increases DARPP-32 phosphorylation at Thr 34 both in dorsal striatum and nucleus accumbens. Time-course and dose-response experiments indicate that DARPP-32 phosphorylation is maximal 30 min following administration of 10mg/kg of THC. The THC-mediated increase in DARPP-32 phosphorylation is reduced by administration of the CB1 receptor antagonist, SR141716A (3mg/kg). A similar attenuation of the effect of THC is also exerted by suppression of cAMP signaling achieved using the dopamine D1 receptor antagonist, SCH23390 (0.125 mg/kg), or the adenosine A2A receptor antagonist, KW6002 (3mg/kg). These results indicate that, in the striatum, THC promotes PKA-dependent phosphorylation of DARPP-32 in striatal medium spiny neurons expressing dopamine D1 and adenosine A2A receptors.
Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Dronabinol/farmacologia , Psicotrópicos/farmacologia , Animais , Benzazepinas/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Fosforilação/efeitos dos fármacos , Purinas/farmacologia , Treonina/metabolismo , Fatores de TempoRESUMO
The molecular basis of L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID), one of the major hindrances in the current therapy for Parkinson's disease, is still unclear. We show that attenuation of cAMP signaling in the medium spiny neurons of the striatum, achieved by genetic inactivation of the dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), reduces LID. We also show that, in dyskinetic mice, sensitized cAMP/cAMP-dependent protein kinase/DARPP-32 signaling leads to phosphorylation/activation of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). The increase in ERK1/2 phosphorylation associated with dyskinesia results in activation of mitogen- and stress-activated kinase-1 (MSK-1) and phosphorylation of histone H3, two downstream targets of ERK involved in transcriptional regulation. In line with these observations, we found that c-Fos expression is abnormally elevated in the striata of mice affected by LID. Persistent enhancement of the ERK signaling cascade is implicated in the generation of LID. Thus, pharmacological inactivation of ERK1/2 achieved using SL327 (alpha-[amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile), an inhibitor of the mitogen-activated kinase/ERK kinase, MEK, during chronic L-DOPA treatment counteracts the induction dyskinesia. Together, these results indicate that a significant proportion of the abnormal involuntary movements developed in response to chronic L-DOPA are attributable to hyperactivation in striatal medium spiny neurons of a signaling pathway including sequential phosphorylation of DARPP-32, ERK1/2, MSK-1, and histone H3.
Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Levodopa/efeitos adversos , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Agonistas de Dopamina/efeitos adversos , Discinesia Induzida por Medicamentos/genética , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxidopamina , Fosforilação , Receptores de AMPA/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/fisiologiaRESUMO
The selection and execution of appropriate motor behavior result in large part from the ability of the basal ganglia to collect, integrate and feedback information coming from the cerebral cortex. The GABAergic medium spiny neurons (MSNs) of the striatum represent the main receiving station of the basal ganglia. These cells are innervated by excitatory glutamatergic fibers from cortex and thalamus, and modulatory dopaminergic fibers from the midbrain. MSNs comprise two populations of projection neurons, which give rise to the direct, striatonigral pathway, and indirect, striatopallidal pathway. Changes in transmission at the level MSNs affect the activity of thalamocortical projection neurons, thereby influencing motor behavior. For instance, the cardinal symptoms of Parkinson's disease, such as tremor, rigidity and bradykinesia, are caused by the selective degeneration of dopaminergic neurons originating in the substantia nigra pars compacta, which modulate the activity of MSNs in the dorsal striatum. The therapy for Parkinson's disease relies on the use of levodopa, but is hampered by neuroadaptive changes affecting dopaminergic and glutamatergic transmission in striatonigral neurons. MSNs are also the target of many psychoactive drugs. For example, caffeine affects motor activity by blocking adenosine receptors in the basal ganglia, thereby affecting neurotransmission in striatopallidal neurons. The present review focuses on studies performed in our laboratory, which provide a molecular framework to understand the effects on motor activity of adenosine and caffeine.
Assuntos
Gânglios da Base/fisiologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/fisiologia , Discinesia Induzida por Medicamentos/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Gânglios da Base/citologia , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/fisiopatologia , Humanos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/enzimologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacosRESUMO
Activation of the cAMP/PKA pathway in the dopaminoceptive neurons of the striatum has been proposed to mediate the actions of various classes of drugs of abuse. Here, we show that, in the mouse nucleus accumbens and dorsal striatum, acute administration of morphine resulted in an increase in the state of phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) at Thr34, without affecting phosphorylation at Thr75. The ability of morphine to stimulate Thr34 phosphorylation was prevented by blockade of dopamine D1 receptors. DARPP-32 knockout mice and T34A DARPP-32 mutant mice displayed a lower hyperlocomotor response to a single injection of morphine than wild-type controls. In contrast, in T75A DARPP-32 mutant mice, morphine-induced psychomotor activation was indistinguishable from that of wild-type littermates. In spite of their reduced response to the acute hyperlocomotor effect of morphine, DARPP-32 knockout mice and T34A DARPP-32 mutant mice were able to develop behavioral sensitization to morphine comparable to that of wild-type controls and to display morphine conditioned place preference. These results demonstrate that dopamine D1 receptor-mediated activation of the cAMP/DARPP-32 cascade in striatal medium spiny neurons is involved in the psychomotor action, but not in the rewarding properties, of morphine.
Assuntos
Morfina/farmacologia , Entorpecentes/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Recompensa , Transdução de Sinais/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/enzimologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/deficiência , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Fatores de TempoRESUMO
Changes in activity of the medium spiny neurons (MSNs) of dorsal and ventral striatum result in alterations of motor performance, ranging from rapid increases or decreases in locomotor activity, to long-term modifications of motor behaviours. In the dorsal striatum, MSNs can be distinguished based on the organization of their connectivity to substantia nigra pars reticulata (SNpr) and internal segment of the globus pallidus (GPi), which, in turn, control thalamocortical neurons. Approximately half of the MSNs project directly to SNpr and GPi, their activation leading to disinhibition of thalamocortical neurons and increased motor activity. The other subpopulation of MSNs connects to SNpr and GPi indirectly and when activated promotes inhibition of thalamocortical neurons, thereby reducing motor activity. The dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) is a modulator of the cAMP signalling pathway, highly expressed in MSNs. This review discusses the regulation of DARPP-32 exerted by psychoactive substances in specific populations of striatal projection neurons and its involvement in short- and long-term motor responses.
Assuntos
Neostriado/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Psicotrópicos/farmacologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Anfetamina/farmacologia , Animais , Cafeína/farmacologia , Canabinoides/farmacologia , Cocaína/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Neostriado/citologia , Neostriado/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologiaRESUMO
Here, we have investigated the neurological consequences of restricted inactivation of Otx2 in adult En1(cre/+); Otx2(flox/flox) mice. In agreement with the crucial role of Otx2 in midbrain patterning, the mutants had a substantial reduction in tyrosine hydroxylase containing neurons. Although the reduction in the number of DAergic neurons was comparable between the SNc and the VTA, we found an unexpected selectivity in the deinnervation of the terminal fields affecting preferentially the ventral striatum and the olfactory tubercle. Interestingly, the mutants showed no abnormalities in exploratory activity or motor coordination. However, the absence of normal DA tone generated significant alterations in DA D1-receptor signalling as indicated by increased mutant striatal levels of phosphorylated DARPP-32 and by an altered motor response to amphetamine. Therefore, we suggest that the En1(cre/+); Otx2(flox/flox) mutant mouse model represents a genetic tool for investigating molecular and behavioural consequences of developmental neuronal dysfunction in the DAergic system.
Assuntos
Anfetaminas/metabolismo , Dopamina/metabolismo , Mesencéfalo/embriologia , Morfogênese , Fatores de Transcrição Otx , Anfetaminas/farmacologia , Animais , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Feminino , Inativação Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Mutação , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Receptores de Dopamina D1/metabolismo , Teste de Desempenho do Rota-Rod , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
Herbal cannabis, smoked in the form of marihuana or hashish, is the most common illicit drug consumed in the Western world. In the brain, cannabinoids interact with neuronal CB1 receptors, thereby producing a marked reduction of motor activity. Here, we report that the motor depressant effect produced by the cannabinoid receptor agonist (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]trans-4-(3-hydroxypropyl)cyclohexanol (CP55,940) is attenuated by genetic inactivation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), which is abundantly expressed in the medium spiny neurons of the striatum. Point mutation of Thr34, the protein kinase A (PKA) phosphorylation site of DARPP-32, produces a similar reduction in the effect of the CB1 agonist. In contrast, point mutation of Thr75, a site on DARPP-32 specifically phosphorylated by cyclin-dependent kinase 5, does not affect the behavioral response to CP55,940. Activation of CB1 receptors, either by an agonist or by inhibition of reuptake of endogenous cannabinoids, stimulates phosphorylation at Thr34, thereby converting DARPP-32 into an inhibitor of protein phosphatase-1. Genetic inactivation either of dopamine D2 receptors or of adenosine A2A receptors reduces the phosphorylation of DARPP-32 at Thr34 and the motor depression produced by CP55,940. Our data indicate that a considerable proportion of the psychomotor effect of cannabinoids can be accounted for by a signaling cascade in striatal projection neurons involving PKA-dependent phosphorylation of DARPP-32, achieved via modulation of dopamine D2 and adenosine A2A transmission.
Assuntos
Canabinoides/farmacologia , Corpo Estriado/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Neurônios/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Animais , Catalepsia/induzido quimicamente , Corpo Estriado/efeitos dos fármacos , Cicloexanóis/farmacologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Fosforilação , Subunidades Proteicas/metabolismo , Receptor CB1 de Canabinoide/efeitos dos fármacosRESUMO
The two mitogen-activated protein kinases (MAPKs), extracellular signal-regulated protein kinase 1 and 2 (ERK1/2), are involved in the control of gene expression via phosphorylation and activation of the transcription factors cyclic AMP response element binding protein (CREB) and Elk-1. Here, we have examined the effect of haloperidol and clozapine, two anti-psychotic drugs, and eticlopride, a selective dopamine D2 receptor antagonist, on the state of phosphorylation of ERK1/2, CREB and Elk-1, in the mouse dorsal striatum. Administration of the typical anti-psychotic haloperidol stimulated the phosphorylation of ERK1/2, CREB and Elk-1. Virtually identical results were obtained using eticlopride. In contrast, the atypical anti-psychotic clozapine reduced ERK1/2, CREB and Elk-1 phosphorylation. This opposite regulation was specifically exerted by haloperidol and clozapine on ERK, CREB, and Elk-1 phosphorylation, as both anti-psychotic drugs increased the phosphorylation of the dopamine- and cyclic AMP-regulated phosphoprotein of 32 kDa (DARPP-32) at the cyclic AMP-dependent protein kinase (PKA) site. The activation of CREB and Elk-1 induced by haloperidol appeared to be achieved via different signalling pathways, as inhibition of ERK1/2 activation abolished the stimulation of Elk-1 phosphorylation without affecting CREB phosphorylation. This study shows that haloperidol and clozapine induce distinct patterns of phosphorylation in the dorsal striatum. The results provide a novel biochemical paradigm elucidating the molecular mechanisms underlying the distinct therapeutic actions of typical and atypical anti-psychotic agents.