Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Biophys J ; 48(8): 721-729, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31549191

RESUMO

To infer changes in the photophysical properties of porphyrins due to complexation with albumin, a combination of Z-scan and conventional spectroscopic techniques was employed. We measured the characteristics of excited states of meso-tetrakis(sulfonatophenyl) porphyrin bound to bovine serum albumin and observed that the binding reduces the intersystem crossing quantum yield and increases the internal conversion one. A reverse saturable absorption process was observed in the nanosecond timescale. These results are important for prediction of the efficiency of this complex in medical and optical applications, because associating porphyrins to proteins enables better accumulation in tumors and improves its stability in optical devices, but at the same time, decreases its triplet quantum yield.


Assuntos
Porfirinas/química , Porfirinas/metabolismo , Soroalbumina Bovina/metabolismo , Animais , Bovinos , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica
2.
Photochem Photobiol Sci ; 18(10): 2461-2468, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31410432

RESUMO

Complexes of photosensitizers with blood proteins play an essential role in their delivery to the cell, as well as in the efficacy of photodynamic therapy. Biscarbocyanine dye non-covalently binds human serum albumin (HSA), the dissociation constant of the dye with albumin being Kd = (1.7 ± 0.1) × 10-5 M. According to time correlated single photon counting (TCSPC) fluorescence lifetime spectroscopy data, two types of complexes with lifetimes of 1.0 ns and 2.5 ns are formed between the dye and HSA. Confocal fluorescence microscopy has unambiguously shown the penetration of biscarbocyanine into endoplasmic reticulum, lysosomes, mitochondria and nuclei of the cells. The dye demonstrates photocytotoxicity towards the colon carcinoma HCT116 cells with IC50 = 0.3 µM. Hydrophobicity of the polymethine chain and the presence of two positive charges on the dye molecule contribute to the effective binding of the dye with HSA and the penetration into cells. These facts allow considering the biscarbocyanine dye as a promising agent for the photodynamic therapy of cancer.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Albumina Sérica/química , Carbocianinas/metabolismo , Carbocianinas/farmacologia , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/metabolismo , Células HCT116 , Humanos , Lisossomos/metabolismo , Ligação Proteica , Albumina Sérica/metabolismo
3.
Nanoscale Res Lett ; 13(1): 40, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29404784

RESUMO

Interaction between porphyrins and quantum dots (QD) via energy and/or charge transfer is usually accompanied by reduction of the QD luminescence intensity and lifetime. However, for CdSe/ZnS-Cys QD water solutions, kept at 276 K during 3 months (aged QD), the significant increase in the luminescence intensity at the addition of meso-tetrakis (p-sulfonato-phenyl) porphyrin (TPPS4) has been observed in this study. Aggregation of QD during the storage provokes reduction in the quantum yield and lifetime of their luminescence. Using steady-state and time-resolved fluorescence techniques, we demonstrated that TPPS4 stimulated disaggregation of aged CdSe/ZnS-Cys QD in aqueous solutions, increasing the quantum yield of their luminescence, which finally reached that of the fresh-prepared QD. Disaggregation takes place due to increase in electrostatic repulsion between QD at their binding with negatively charged porphyrin molecules. Binding of just four porphyrin molecules per single QD was sufficient for total QD disaggregation. The analysis of QD luminescence decay curves demonstrated that disaggregation stronger affected the luminescence related with the electron-hole annihilation in the QD shell. The obtained results demonstrate the way to repair aged QD by adding of some molecules or ions to the solutions, stimulating QD disaggregation and restoring their luminescence characteristics, which could be important for QD biomedical applications, such as bioimaging and fluorescence diagnostics. On the other hand, the disaggregation is important for QD applications in biology and medicine since it reduces the size of the particles facilitating their internalization into living cells across the cell membrane.

4.
Photochem Photobiol ; 88(4): 992-1000, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22332981

RESUMO

Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides brasiliensis. Currently, the treatment approach involves the use of antifungal drugs and requires years of medical therapy, which can induce nephrotoxicity and lead to resistance in yeast strains. Photodynamic inactivation (PDI) is a new therapy capable of killing microorganisms via the combination of a nontoxic dye with visible light to generate toxic reactive oxygen species (ROS). We investigated the phototoxic effect of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP), a cationic porphyrin, on the survival of P. brasiliensis following exposure to light. Phototoxicity was found to depend on both the fluence and concentration of the photosensitizer (PS). Although the biological effects of PDI are known, the molecular mechanisms underlying the resultant damage to cells are poorly defined. Therefore, we evaluated the molecular response to PDI-induced oxidative stress by gene transcription analysis. We selected genes associated with the high-osmolarity glycerol (HOG)-mitogen-activated protein kinase (MAPK) pathway and antioxidant enzymes. The genes analyzed were all overexpressed after PDI treatment, suggesting that the oxidative stress generated in our experimental conditions induces antioxidant activity. In addition to PDI-induced gene expression, there was high cell mortality, suggesting that the antioxidant response was not sufficient to avoid fungal mortality.


Assuntos
Paracoccidioides/efeitos dos fármacos , Paracoccidioides/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Luz , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Oxirredutases/genética , Oxirredutases/metabolismo , Paracoccidioides/metabolismo , Fármacos Fotossensibilizantes/química , Porfirinas/química , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica
5.
J Photochem Photobiol B ; 75(1-2): 27-32, 2004 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-15246347

RESUMO

The cytotoxicity of two nitroheterocyclic compounds (NHCD), Nitracrine, 1-nitro-9(3-3-dimethylaminopropylamino) acridine and Quinifuryl, 2-(5'-nitro-2'-furanyl) ethenyl-4-[N-[4-(N,N-diethylamino)-1'-methylbutyl] carbamoyl] quinoline, towards two lines of leukaemic cells and a line of non-transformed cells, was measured in comparison, on the dark and under illumination with visible light (350-450 nm). Both drugs showed highly elevated cytotoxicity when illuminated with LC(50) values 7-35 times lower after 1 h illumination compared to 1 h incubation of cells incubation with drug on the dark. Cytotoxicity of Nitracrine toward all cell lines studied exceeded that of Quinifuryl, both on the dark and under illumination, so that approximately 10 times lower concentration of former drug was needed to reach the same toxicity as the latter. General toxic effect was calculated as a direct cell kill and a cell proliferation arrest. The effect >80% for both drugs was achieved after 1 h cell illumination with as low drug concentrations as 0.2 microM for Quinifuryl and 0.02 microM for Nitracrine.


Assuntos
Antineoplásicos/farmacologia , Luz , Nitracrina/farmacologia , Quinolinas/farmacologia , Animais , Antineoplásicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Escuridão , Avaliação Pré-Clínica de Medicamentos , Humanos , Células K562 , Leucemia P388 , Camundongos , Células NIH 3T3 , Nitracrina/toxicidade , Quinolinas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA