RESUMO
Adenoviruses (AdVs) are major contributors to clinical illnesses. Novel human and animal AdVs continue to be identified and characterized. Comparative analyses using bioinformatic methods and Omics-based technologies allow insights into how these human pathogens have emerged and their potential for host cross-species transmission. Systematic review of literature published across ProQuest, Pubmed, and Web of Science databases for evidence of adenoviral zoonotic potential identified 589 citations. After removing duplicates, 327 citations were screened for relevance; of which, 74 articles received full-text reviews. Among these, 24 were included here, of which 16 demonstrated evidence of zoonotic transmission of AdVs. These documented instances of AdV crossing host species barriers between humans and non-human primate, bat, feline, swine, canine, ovine, and caprine. Eight studies sought to but did not find evidence of zoonosis. The findings demonstrate substantial evidence suggesting AdVs have previously and will continue crossing host species barriers. These have human health consequences both in terms of novel pathogen emergence and epidemic outbreaks, and of appropriate and safe use of non-human adenoviruses for therapeutics. As routine human clinical diagnostics may miss a novel cross-species adenovirus infection in humans, next generation sequencing or panspecies molecular diagnostics may be necessary to detect such incursions.
Assuntos
Infecções por Adenoviridae/transmissão , Infecções por Adenoviridae/veterinária , Adenoviridae/fisiologia , Zoonoses/transmissão , Adenoviridae/genética , Infecções por Adenoviridae/virologia , Animais , Gatos , Cães , Cabras , Especificidade de Hospedeiro , Humanos , Filogenia , Ovinos , Suínos , Zoonoses/virologiaRESUMO
BACKGROUND: The large livestock operations and dense human population of Southeast Asia are considered a hot-spot for emerging viruses. OBJECTIVES: To determine if the pathogens adenovirus (ADV), coronavirus (CoV), encephalomyocarditis virus (EMCV), enterovirus (EV), influenza A-D (IAV, IBV, ICV, and IDV), porcine circovirus 2 (PCV2), and porcine rotaviruses A and C (RVA and RVC), are aerosolized at the animal-interface, and if humans working in these environments are carrying these viruses in their nasal airways. STUDY: This cross-sectional study took place in Sarawak, Malaysia among 11 pig farms, 2 abattoirs, and 3 animal markets in June and July of 2017. Pig feces, pig oral secretions, bioaerosols, and worker nasal wash samples were collected and analyzed via rPCR and rRT-PCR for respiratory and diarrheal viruses. RESULTS: In all, 55 pig fecal, 49 pig oral or water, 45 bioaerosol, and 78 worker nasal wash samples were collected across 16 sites. PCV2 was detected in 21 pig fecal, 43 pig oral or water, 3 bioaerosol, and 4 worker nasal wash samples. In addition, one or more bioaerosol or pig samples were positive for EV, IAV, and RVC, and one or more worker samples were positive for ADV, CoV, IBV, and IDV. CONCLUSIONS: This study demonstrates that nucleic acids from a number of targeted viruses were present in pig oral secretions and pig fecal samples, and that several viruses were detected in bioaerosol samples or in the nasal passages of humans with occupational exposure to pigs. These results demonstrate the need for future research in strengthening viral surveillance at the human-animal interface, specifically through expanded bioaerosol sampling efforts and a seroepidemiological study of individuals with exposure to pigs in this region for PCV2 infection.