Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mini Rev Med Chem ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37680156

RESUMO

Drug discovery, vaccine design, and protein interaction studies are rapidly moving toward the routine use of molecular dynamics simulations (MDS) and related methods. As a result of MDS, it is possible to gain insights into the dynamics and function of identified drug targets, antibody-antigen interactions, potential vaccine candidates, intrinsically disordered proteins, and essential proteins. The MDS appears to be used in all possible ways in combating diseases such as cancer, however, it has not been well documented as to how effectively it is applied to infectious diseases such as Leishmaniasis. As a result, this systematic review aims to survey the application of MDS in combating leishmaniasis. We have systematically collected articles that illustrate the implementation of MDS in drug discovery, vaccine development, and structural studies related to Leishmaniasis. Of all the articles reviewed, we identified that only a limited number of studies focused on the development of vaccines against Leishmaniasis through MDS. Also, the PCA and FEL studies were not carried out in most of the studies. These two were globally accepted utilities to understand the conformational changes and hence it is recommended that this analysis should be taken up in similar approaches in the future.

3.
J Chem Inf Model ; 61(1): 423-431, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33412850

RESUMO

Membrane fusion, a key step in the early stages of virus propagation, allows the release of the viral genome in the host cell cytoplasm. The process is initiated by fusion peptides that are small, hydrophobic components of viral membrane-embedded glycoproteins and are typically conserved within virus families. Here, we attempted to identify the correct fusion peptide region in the Spike protein of SARS-CoV-2 by all-atom molecular dynamics simulations of dual membrane systems with varied oligomeric units of putative candidate peptides. Of all of the systems tested, only a trimeric unit of a 40-amino-acid region (residues 816-855 of SARS-CoV-2 Spike) was effective in triggering the initial stages of membrane fusion, within 200 ns of simulation time. Association of this trimeric unit with dual membranes resulted in the migration of lipids from the upper leaflet of the lower bilayer toward the lower leaflet of the upper bilayer to create a structural unit reminiscent of a fusion bridge. We submit that residues 816-855 of Spike represent the bona fide fusion peptide of SARS-CoV-2 and that computational methods represent an effective way to identify fusion peptides in viral glycoproteins.


Assuntos
COVID-19/metabolismo , Fusão de Membrana , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Sequência de Aminoácidos , COVID-19/virologia , Interações Hospedeiro-Patógeno , Humanos , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Multimerização Proteica , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química
4.
Comput Biol Med ; 127: 104063, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33126128

RESUMO

Viroporins are oligomeric, pore forming, viral proteins that play critical roles in the life cycle of pathogenic viruses. Viroporins like HIV-1 Vpu, Alphavirus 6 K, Influenza M2, HCV p7, and Picornavirus 2B, form discrete aqueous passageways which mediate ion and small molecule transport in infected cells. The alterations in host membrane structures induced by viroporins is essential for key steps in the virus life cycle like entry, replication and egress. Any disruption in viroporin functionality severely compromises viral pathogenesis. The envelope (E) protein encoded by coronaviruses is a viroporin with ion channel activity and has been shown to be crucial for the assembly and pathophysiology of coronaviruses. We used a combination of virtual database screening, molecular docking, all-atom molecular dynamics simulation and MM-PBSA analysis to test four FDA approved drugs - Tretinoin, Mefenamic Acid, Ondansetron and Artemether - as potential inhibitors of ion channels formed by SARS-CoV-2 E protein. Interaction and binding energy analysis showed that electrostatic interactions and polar solvation energy were the major driving forces for binding of the drugs, with Tretinoin being the most promising inhibitor. Tretinoin bound within the lumen of the channel formed by E protein, which is lined by hydrophobic residues like Phe, Val and Ala, indicating its potential for blocking the channel and inhibiting the viroporin functionality of E. In control simulations, tretinoin demonstrated a lower binding energy with a known target as compared to SARS-CoV-2 E protein. This work thus highlights the possibility of exploring Tretinoin as a potential SARS-CoV-2 E protein ion channel blocker and virus assembly inhibitor, which could be an important therapeutic strategy in the treatment for coronaviruses.


Assuntos
COVID-19/virologia , SARS-CoV-2/metabolismo , Tretinoína/farmacologia , Proteínas do Envelope Viral/antagonistas & inibidores , Simulação por Computador , Bases de Dados de Compostos Químicos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas do Envelope Viral/metabolismo
5.
Microbiol Res ; 226: 19-26, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31284940

RESUMO

Pseudomonas aeruginosa is one of the most common pathogens associated with nosocomial infections and a great concern to immunocompromised individuals especially in the cases of cystic fibrosis, AIDS and burn wounds. The pathogenicity of P. aeruginosa is largely directed by the quorum sensing (QS) system. Hence, QS may be considered an important therapeutic target to combat P. aeruginosa infections. The anti-quorum sensing and anti-biofilm efficacy of aromatic aldehyde, 5-hydroxymethylfurfural (5-HMF) against P. aeruginosa PAO1 were assessed. At the sub-inhibitory concentration, 5-HMF suppressed the production of QS-controlled virulence phenotypes and biofilm formation in P. aeruginosa. It was also able to significantly enhance the survival rate of C. elegans infected with P. aeruginosa. The in silico studies revealed that 5-HMF could serve as a competitive inhibitor for the auto-inducer molecules as it exhibited a strong affinity for the regulatory proteins of the QS-circuits i.e. LasR and RhlR. In addition, a significant down-regulation in the expression of QS-related genes was observed suggesting the ability of 5-HMF in mitigating the pathogenicity of P. aeruginosa.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Furaldeído/análogos & derivados , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/efeitos dos fármacos , Animais , Proteínas de Bactérias , Caenorhabditis elegans , Simulação por Computador , Modelos Animais de Doenças , Furaldeído/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Percepção de Quorum/genética , Taxa de Sobrevida , Transativadores , Virulência/efeitos dos fármacos , Fatores de Virulência
6.
Microb Pathog ; 118: 48-60, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29526565

RESUMO

The production of virulence determinants and biofilm formation in numerous pathogens is regulated by the cell-density-dependent phenomenon, Quorum sensing (QS). The QS system in multidrug resistant opportunistic pathogen, P. aeruginosa constitutes of three main regulatory circuits namely Las, Rhl, and Pqs which are closely linked to its pathogenicity and establishment of chronic infections. In spite intensive antibiotic therapy, P. aeruginosa continue to be an important cause of nosocomial infections and also the major cause of mortality in Cystic Fibrosis patients with 80% of the adults suffering from chronic P. aeruginosa infection. Hence, targeting QS circuit offers an effective intervention to the ever increasing problem of drug resistant pathogens. In the present study, the pentacyclic triterpenes i.e. Betulin (BT) and Betulinic acid (BA) exhibited significant attenuation in production of QS-regulated virulence factors and biofilm formation in P. aeruginosa, at the sub-lethal concentration. The test compound remarkably interfered in initial stages of biofilm development by decreasing the exopolysaccharide production and cell surface hydrophobicity. Based on the in vivo studies, the test compounds notably enhanced the survival of Caenorhabditis elegans infected with P. aeruginosa. Furthermore, molecular docking analysis revealed that BT and BA can act as a strong competitive inhibitor for QS receptors, LasR and RhlR. The findings suggest that BT and BA can serve as potential anti-infectives in the controlling chronic infection of P. aeruginosa.


Assuntos
Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Triterpenos Pentacíclicos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Triterpenos/farmacologia , Fatores de Virulência/metabolismo , Alginatos/análise , Animais , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caenorhabditis elegans/microbiologia , Quitinases/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos , Ácido Glucurônico/análise , Glicolipídeos/análise , Ácidos Hexurônicos/análise , Interações Hidrofóbicas e Hidrofílicas , Indóis , Metaloendopeptidases/metabolismo , Metaloproteases/metabolismo , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Polissacarídeos Bacterianos/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/veterinária , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Piocianina/metabolismo , Análise de Sobrevida , Transativadores/metabolismo , Virulência/efeitos dos fármacos , Ácido Betulínico
7.
Sci Rep ; 7(1): 6290, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740191

RESUMO

The capability of performing an array of functions with its single subunit structure makes T7 RNA polymerase (T7RNAP) as one of the simplest yet attractive target for various investigations ranging from structure determinations to several biological tests. In this study, with the help of molecular dynamics (MD) calculations and molecular docking, we investigated the effect of varying pH conditions on conformational flexibility of T7RNAP. We also studied its effect on the interactions with a well established inhibitor (heparin), substrate GTP and T7 promoter of T7RNAP. The simulation studies were validated with the help of three dimensional reconstructions of the polymerase at different pH environments using transmission electron microscopy and single particle analysis. On comparing the simulated structures, it was observed that the structure of T7RNAP changes considerably and interactions with its binding partners also changes as the pH shifts from basic to acidic. Further, it was observed that the C-terminal end plays a vital role in the inefficiency of the polymerase at low pH. Thus, this in-silico study may provide a significant insight into the structural investigations on T7RNAP as well as in designing potent inhibitors against it in varying pH environments.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Virais/química , Proteínas Virais/metabolismo , Trifosfato de Adenosina/metabolismo , Heparina/metabolismo , Concentração de Íons de Hidrogênio , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA