Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 743126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777289

RESUMO

Characterizing Mycobacterium abscessus complex (MABSC) biofilms under host-relevant conditions is essential to the design of informed therapeutic strategies targeted to this persistent, drug-tolerant, population of extracellular bacilli. Using synthetic cystic fibrosis medium (SCFM) which we previously reported to closely mimic the conditions encountered by MABSC in actual cystic fibrosis (CF) sputum and a new model of biofilm formation, we show that MABSC biofilms formed under these conditions are substantially different from previously reported biofilms grown in standard laboratory media in terms of their composition, gene expression profile and stress response. Extracellular DNA (eDNA), mannose-and glucose-containing glycans and phospholipids, rather than proteins and mycolic acids, were revealed as key extracellular matrix (ECM) constituents holding clusters of bacilli together. None of the environmental cues previously reported to impact biofilm development had any significant effect on SCFM-grown biofilms, most likely reflecting the fact that SCFM is a nutrient-rich environment in which MABSC finds a variety of ways of coping with stresses. Finally, molecular determinants were identified that may represent attractive new targets for the development of adjunct therapeutics targeting MABSC biofilms in persons with CF.

2.
mBio ; 11(3)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430474

RESUMO

Antibiotics produced by bacteria play important roles in microbial interactions and competition Antibiosis can induce resistance mechanisms in target organisms, and at sublethal doses, antibiotics have been shown to globally alter gene expression patterns. Here, we show that hygromycin A from Streptomyces sp. strain 2AW. induces Chromobacterium violaceum ATCC 31532 to produce the purple antibiotic violacein. Sublethal doses of other antibiotics that similarly target the polypeptide elongation step of translation likewise induced violacein production, unlike antibiotics with different targets. C. violaceum biofilm formation and virulence against Drosophila melanogaster were also induced by translation-inhibiting antibiotics, and we identified an antibiotic-induced response (air) two-component regulatory system that is required for these responses. Genetic analyses indicated a connection between the Air system, quorum-dependent signaling, and the negative regulator VioS, leading us to propose a model for induction of violacein production. This work suggests a novel mechanism of interspecies interaction in which a bacterium produces an antibiotic in response to inhibition by another bacterium and supports the role of antibiotics as signal molecules.IMPORTANCE Secondary metabolites play important roles in microbial communities, but their natural functions are often unknown and may be more complex than appreciated. While compounds with antibiotic activity are often assumed to underlie microbial competition, they may alternatively act as signal molecules. In either scenario, microorganisms might evolve responses to sublethal concentrations of these metabolites, either to protect themselves from inhibition or to change certain behaviors in response to the local abundance of another species. Here, we report that violacein production by C. violaceum ATCC 31532 is induced in response to hygromycin A from Streptomyces sp. 2AW, and we show that this response is dependent on inhibition of translational polypeptide elongation and a previously uncharacterized two-component regulatory system. The breadth of the transcriptional response beyond violacein induction suggests a surprisingly complex metabolite-mediated microbe-microbe interaction and supports the hypothesis that antibiotics evolved as signal molecules. These novel insights will inform predictive models of soil community dynamics and the unintended effects of clinical antibiotic administration.


Assuntos
Antibacterianos/farmacologia , Antibiose/efeitos dos fármacos , Chromobacterium/efeitos dos fármacos , Cinamatos/farmacologia , Higromicina B/análogos & derivados , Indóis/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Chromobacterium/genética , Chromobacterium/patogenicidade , Drosophila melanogaster , Feminino , Regulação Bacteriana da Expressão Gênica , Higromicina B/farmacologia , Percepção de Quorum/efeitos dos fármacos , Streptomyces/metabolismo , Virulência
3.
Microbiology (Reading) ; 166(8): 695-706, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32459167

RESUMO

Biofilm-associated infections are difficult to eradicate because of their ability to tolerate antibiotics and evade host immune responses. Amoebae and/or their secreted products may provide alternative strategies to inhibit and disperse biofilms on biotic and abiotic surfaces. We evaluated the potential of five predatory amoebae - Acanthamoeba castellanii, Acanthamoeba lenticulata, Acanthamoeba polyphaga, Vermamoeba vermiformis and Dictyostelium discoideum - and their cell-free secretions to disrupt biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium bovis. The biofilm biomass produced by MRSA and M. bovis was significantly reduced when co-incubated with A. castellanii, A. lenticulata and A. polyphaga, and their corresponding cell-free supernatants (CFS). Acanthamoeba spp. generally produced CFS that mediated biofilm dispersal rather than directly killing the bacteria; however, A. polyphaga CFS demonstrated active killing of MRSA planktonic cells when the bacteria were present at low concentrations. The active component(s) of the A. polyphaga CFS is resistant to freezing, but can be inactivated to differing degrees by mechanical disruption and exposure to heat. D. discoideum and its CFS also reduced preformed M. bovis biofilms, whereas V. vermiformis only decreased M. bovis biofilm biomass when amoebae were added. These results highlight the potential of using select amoebae species or their CFS to disrupt preformed bacterial biofilms.


Assuntos
Amébidos/fisiologia , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/fisiologia , Mycobacterium bovis/fisiologia , Amébidos/classificação , Amébidos/metabolismo , Antibiose , Biofilmes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mycobacterium bovis/efeitos dos fármacos , Especificidade da Espécie
4.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28970274

RESUMO

Bacteria in a biofilm community have increased tolerance to antimicrobial therapy. To characterize the role of biofilms in equine endometritis, six mares were inoculated with lux-engineered Pseudomonas aeruginosa strains isolated from equine uterine infections. Following establishment of infection, the horses were euthanized and the endometrial surfaces were imaged for luminescence to localize adherent lux-labeled bacteria. Samples from the endometrium were collected for cytology, histopathology, carbohydrate analysis, and expression of inflammatory cytokine genes. Tissue-adherent bacteria were present in focal areas between endometrial folds (6/6 mares). The Pel exopolysaccharide (biofilm matrix component) and cyclic di-GMP (biofilm-regulatory molecule) were detected in 6/6 mares and 5/6 mares, respectively, from endometrial samples with tissue-adherent bacteria (P < 0.05). A greater incidence (P < 0.05) of Pel exopolysaccharide was present in samples fixed with Bouin's solution (18/18) than in buffered formalin (0/18), indicating that Bouin's solution is more appropriate for detecting bacteria adherent to the endometrium. There were no differences (P > 0.05) in the number of inflammatory cells in the endometrium between areas with and without tissue-adherent bacteria. Neutrophils were decreased (P < 0.05) in areas surrounding tissue-adherent bacteria compared to those in areas free of adherent bacteria. Gene expression of interleukin-10, an immune-modulatory cytokine, was significantly (P < 0.05) increased in areas of tissue-adherent bacteria compared to that in endometrium absent of biofilm. These findings indicate that P. aeruginosa produces a biofilm in the uterus and that the host immune response is modulated focally around areas with biofilm, but inflammation within the tissue is similar in areas with and without biofilm matrix. Future studies will focus on therapeutic options for elimination of bacterial biofilm in the equine uterus.


Assuntos
Biofilmes/crescimento & desenvolvimento , Endometrite/patologia , Doenças dos Cavalos/patologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/fisiologia , Animais , Endometrite/microbiologia , Endométrio/microbiologia , Endométrio/patologia , Feminino , Genes Reporter , Doenças dos Cavalos/microbiologia , Cavalos , Luciferases/análise , Luciferases/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética
5.
J Clin Microbiol ; 54(3): 631-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26719448

RESUMO

In this study, we evaluated the ability of the equine clinical treatments N-acetylcysteine, EDTA, and hydrogen peroxide to disrupt in vitro biofilms and kill equine reproductive pathogens (Escherichia coli, Pseudomonas aeruginosa, or Klebsiella pneumoniae) isolated from clinical cases. N-acetylcysteine (3.3%) decreased biofilm biomass and killed bacteria within the biofilms of E. coli isolates. The CFU of recoverable P. aeruginosa and K. pneumoniae isolates were decreased, but the biofilm biomass was unchanged. Exposure to hydrogen peroxide (1%) decreased the biofilm biomass and reduced the CFU of E. coli isolates, K. pneumoniae isolates were observed to have a reduction in CFU, and minimal effects were observed for P. aeruginosa isolates. Chelating agents (EDTA formulations) reduced E. coli CFU but were ineffective at disrupting preformed biofilms or decreasing the CFU of P. aeruginosa and K. pneumoniae within a biofilm. No single nonantibiotic treatment commonly used in equine veterinary practice was able to reduce the CFU and biofilm biomass of all three Gram-negative species of bacteria evaluated. An in vivo equine model of infectious endometritis was also developed to monitor biofilm formation, utilizing bioluminescence imaging with equine P. aeruginosa isolates from this study. Following infection, the endometrial surface contained focal areas of bacterial growth encased in a strongly adherent "biofilm-like" matrix, suggesting that biofilms are present during clinical cases of infectious equine endometritis. Our results indicate that Gram-negative bacteria isolated from the equine uterus are capable of producing a biofilm in vitro, and P. aeruginosa is capable of producing biofilm-like material in vivo.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Endometrite/tratamento farmacológico , Endometrite/microbiologia , Bactérias Gram-Negativas/fisiologia , Acetilcisteína/farmacologia , Animais , Biomassa , Ácido Edético/farmacologia , Feminino , Bactérias Gram-Negativas/isolamento & purificação , Cavalos , Peróxido de Hidrogênio/farmacologia , Medições Luminescentes , Viabilidade Microbiana/efeitos dos fármacos , Coloração e Rotulagem/métodos , Útero/microbiologia
6.
Appl Environ Microbiol ; 78(15): 5060-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22582064

RESUMO

The increased tolerance toward the host immune system and antibiotics displayed by biofilm-forming Pseudomonas aeruginosa and other bacteria in chronic infections such as cystic fibrosis bronchopneumonia is of major concern. Targeting of biofilm formation is believed to be a key aspect in the development of novel antipathogenic drugs that can augment the effect of classic antibiotics by decreasing antimicrobial tolerance. The second messenger cyclic di-GMP is a positive regulator of biofilm formation, and cyclic di-GMP signaling is now regarded as a potential target for the development of antipathogenic compounds. Here we describe the development of fluorescent monitors that can gauge the cellular level of cyclic di-GMP in P. aeruginosa. We have created cyclic di-GMP level reporters by transcriptionally fusing the cyclic di-GMP-responsive cdrA promoter to genes encoding green fluorescent protein. We show that the reporter constructs give a fluorescent readout of the intracellular level of cyclic di-GMP in P. aeruginosa strains with different levels of cyclic di-GMP. Furthermore, we show that the reporters are able to detect increased turnover of cyclic di-GMP mediated by treatment of P. aeruginosa with the phosphodiesterase inducer nitric oxide. Considering that biofilm formation is a necessity for the subsequent development of a chronic infection and therefore a pathogenicity trait, the reporters display a significant potential for use in the identification of novel antipathogenic compounds targeting cyclic di-GMP signaling, as well as for use in research aiming at understanding the biofilm biology of P. aeruginosa.


Assuntos
Biofilmes , GMP Cíclico/análise , Fluorescência , Genes Reporter/genética , Pseudomonas aeruginosa/química , Adesinas Bacterianas/genética , Proteínas de Fluorescência Verde/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/genética
7.
Mol Microbiol ; 75(4): 827-42, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20088866

RESUMO

Pseudomonas aeruginosa, the principal pathogen of cystic fibrosis patients, forms antibiotic-resistant biofilms promoting chronic colonization of the airways. The extracellular (EPS) matrix is a crucial component of biofilms that provides the community multiple benefits. Recent work suggests that the secondary messenger, cyclic-di-GMP, promotes biofilm formation. An analysis of factors specifically expressed in P. aeruginosa under conditions of elevated c-di-GMP, revealed functions involved in the production and maintenance of the biofilm extracellular matrix. We have characterized one of these components, encoded by the PA4625 gene, as a putative adhesin and designated it cdrA. CdrA shares structural similarities to extracellular adhesins that belong to two-partner secretion systems. The cdrA gene is in a two gene operon that also encodes a putative outer membrane transporter, CdrB. The cdrA gene encodes a 220 KDa protein that is predicted to be rod-shaped protein harbouring a beta-helix structural motif. Western analysis indicates that the CdrA is produced as a 220 kDa proprotein and processed to 150 kDa before secretion into the extracellular medium. We demonstrated that cdrAB expression is minimal in liquid culture, but is elevated in biofilm cultures. CdrAB expression was found to promote biofilm formation and auto-aggregation in liquid culture. Aggregation mediated by CdrA is dependent on the Psl polysaccharide and can be disrupted by adding mannose, a key structural component of Psl. Immunoprecipitation of Psl present in culture supernatants resulted in co-immunoprecipitation of CdrA, providing additional evidence that CdrA directly binds to Psl. A mutation in cdrA caused a decrease in biofilm biomass and resulted in the formation of biofilms exhibiting decreased structural integrity. Psl-specific lectin staining suggests that CdrA either cross-links Psl polysaccharide polymers and/or tethers Psl to the cells, resulting in increased biofilm structural stability. Thus, this study identifies a key protein structural component of the P. aeruginosa EPS matrix.


Assuntos
Adesinas Bacterianas/metabolismo , Biofilmes , Pseudomonas aeruginosa/patogenicidade , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Mutação , Óperon , Polissacarídeos Bacterianos/metabolismo , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA