Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Acc Chem Res ; 57(6): 933-944, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501206

RESUMO

Nuclear medicine harnesses radioisotopes for the diagnosis and treatment of disease. While the isotopes 99mTc and 111In have enabled the clinical diagnosis of millions of patients over the past 3 decades, more recent clinical translation of numerous 68Ga/177Lu-based radiopharmaceuticals for diagnostic imaging and therapy underscores the clinical utility of metal-based radiopharmaceuticals in mainstream cancer treatment. In addition to such established radionuclides, advancements in radioisotope production have enabled the production of radionuclides with a broad range of half-lives and emission properties of interest for nuclear medicine. Chemical means to form kinetically inert, in vivo-compatible species that can be modified with disease-targeting vectors is imperative. This presents a challenge for radiosiotopes of elements where the aqueous chemistry is still underdeveloped and poorly understood. Here, we discuss our efforts to date in exploring the aqueous, radioactive coordination chemistry of highly Lewis acidic metal ions and how our discoveries apply to the diagnosis and treatment of cancer in preclinical models of disease. The scope of this Account includes approaches to aqueous coordination of to-date understudied highly Lewis acidic metal ions with radioisotopes of emerging interest and the modulation of well-understood coordination environments of radio-coordination complexes to induce metal-catalyzed reactivity for separation and pro-drug applications.First, we discuss the development of seven-coordinate, small-cavity macrocyclic chelator platform mpatcn/picaga as an exemplary case study, which forms robust complexes with 44Sc/47Sc isotopes. Due to the high chemical hardness and pronounced Lewis acidity of the Sc3+ ion, the displacement of ternary ligand H2O by 18/natF- can be achieved to form an inert Sc-18/natF bond. Corresponding coordination complex natSc-18F is in vivo compatible and forms a theranostic tetrad with corresponding 44Sc/47Sc, 177Lu complexes all exhibiting homologous biodistribution profiles. Another exceptionally hard, highly Lewis acidic ion with underdeveloped aqueous chemistry and emerging interest in nuclear medicine is 45Ti4+. To develop de novo approaches to the mononuclear chelation of this ion under aqueous conditions, we employed a fragment-based bidentate ligand screening approach which identified two leads. The screen successfully predicted the formation of [45Ti][Ti(TREN-CAM)], a Ti-triscatechol complex that exhibits remarkable in vivo stability. Furthermore, the fragment-based screen also identified approaches that enabled solid-phase separation of Ti4+ and Sc3+ of interest in streamlining the isotope production of 45Ti and accessing new ways to separate 44Ti/44Sc for the development of a long-lived generator system. In addition to establishing the inert chelation of Ti4+ and Sc3+, we introduce controlled, metal-induced reactivity of corresponding coordination complexes on macroscopic and radiotracer scales. Metal-mediated autolytic amide bond cleavage (MMAAC) enables the temperature-dependent release of high-molar-activity, ready-to-inject radiopharmaceuticals; cleavage is selectively triggered by coordinated trivalent Lewis acid nat/68Ga3+ or Sc3+. Following the scope of reactivity and mechanistic studies, we validated MMAAC for the synthesis of high-molar-activity radiopharmaceuticals to image molecular targets with low expression and metal-mediated prodrug hydrolysis in vivo.This Account summarizes how developing the aqueous coordination chemistry and tuning the chemical reactivity of metal ions with high Lewis acidity at the macroscopic and tracer scales directly apply to the radiopharmaceutical synthesis with clinical potential.


Assuntos
Complexos de Coordenação , Medicina Nuclear , Humanos , Compostos Radiofarmacêuticos/química , Ácidos de Lewis , Complexos de Coordenação/química , Ligantes , Distribuição Tecidual , Radioisótopos/química , Quelantes/química , Metais , Íons
2.
Angew Chem Int Ed Engl ; 63(18): e202319578, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38442302

RESUMO

The development of inert, biocompatible chelation methods is required to harness the emerging positron emitting radionuclide 45Ti for radiopharmaceutical applications. Herein, we evaluate the Ti(IV)-coordination chemistry of four catechol-based, hexacoordinate chelators using synthetic, structural, computational, and radiochemical approaches. The siderophore enterobactin (Ent) and its synthetic mimic TREN-CAM readily form mononuclear Ti(IV) species in aqueous solution at neutral pH. Radiolabeling studies reveal that Ent and TREN-CAM form mononuclear complexes with the short-lived, positron-emitting radionuclide 45Ti(IV), and do not transchelate to plasma proteins in vitro and exhibit rapid renal clearance in naïve mice. These features guide efforts to target the 45Ti isotope to prostate cancer tissue through the design, synthesis, and evaluation of Ent-DUPA, a small molecule conjugate composed of a prostate specific membrane antigen (PSMA) targeting peptide and a monofunctionalized Ent scaffold. The [45Ti][Ti(Ent-DUPA)]2- complex forms readily at room temperature. In a tumor xenograft model in mice, selective tumor tissue accumulation (8±5 %, n=5), and low off-target uptake in other organs is observed. Overall, this work demonstrates targeted imaging with 45Ti(IV), provides a foundation for advancing the application of 45Ti in nuclear medicine, and reveals that Ent can be repurposed as a 45Ti-complexing cargo for targeted nuclear imaging applications.


Assuntos
Neoplasias da Próstata , Sideróforos , Humanos , Masculino , Animais , Camundongos , Sideróforos/química , Enterobactina/metabolismo , Titânio/química , Uso Off-Label , Neoplasias da Próstata/metabolismo , Radioisótopos
3.
J Am Chem Soc ; 145(44): 24358-24366, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37869897

RESUMO

Discrete luminescent lanthanide complexes represent a potential alternative to organic chromophores due to their tunability of optical properties, insensitivity to photobleaching, and large pseudo-Stokes shifts. Previously, we demonstrated that the lack of depth penetration of UV excitation required to sensitize discrete terbium and europium complexes can be overcome using Cherenkov radiation emitted by clinically employed radioisotopes in situ. Here, we show that the second-generation europium complexes [Eu(III)(pcta-PEPA2)] and [Eu(III)(tacn-pic-PEPA2)] (Φ = 57% and 76%, respectively) lower the limit of detection (LoD) to 1 nmol in the presence of 10 µCi of Cherenkov emitting isotopes, 18F and 68Ga. Bifunctionalization provides access to cysteine-linked peptide conjugates with comparable brightness and LoD. The conjugate, [Eu(tacn-(pic-PSMA)-PEPA2)], displays high binding affinity to prostate-specific membrane antigen (PSMA)-expressing PC-3 prostate cancer cells in vitro and can be visualized in the membrane-bound state using confocal microscopy. Biodistribution studies with the [86Y][Y(III)(tacn-(pic-PSMA)-PEPA2)] analogue in a mouse xenograft model were employed to study pharmacokinetics. Systemic administration of the targeted Cherenkov emitter, [68Ga][Ga(III)(PSMA-617)], followed by intratumoral injection or topical application of 20 or 10 nmol [Eu(III)(tacn-(pic-PSMA)-PEPA2)], respectively, in live mice resulted in statistically significant signal enhancement using conventional small animal imaging (620 nm bandpass filter). Optical imaging informed successful tumor resection. Ex vivo imaging of the fixed tumor tissue with 1 and 2 photon excitation further reveals the accumulation of the administered Eu(III) complex in target tissues. This work represents a significant step toward the application of luminescent lanthanide complexes for optical imaging in a clinical setting.


Assuntos
Elementos da Série dos Lantanídeos , Neoplasias , Masculino , Humanos , Animais , Camundongos , Európio/química , Luminescência , Distribuição Tecidual , Radioisótopos de Gálio , Elementos da Série dos Lantanídeos/química , Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Microscopia Confocal
4.
J Am Chem Soc ; 145(29): 16261-16270, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37434328

RESUMO

Activation of metalloprodrugs or prodrug activation using transition metal catalysts represents emerging strategies for drug development; however, they are frequently hampered by poor spatiotemporal control and limited catalytic turnover. Here, we demonstrate that metal complex-mediated, autolytic release of active metallodrugs can be successfully employed to prepare clinical grade (radio-)pharmaceuticals. Optimization of the Lewis-acidic metal ion, chelate, amino acid linker, and biological targeting vector provides means to release peptide-based (radio-)metallopharmaceuticals in solution and from the solid phase using metal-mediated, autolytic amide bond cleavage (MMAAC). Our findings indicate that coordinative polarization of an amide bond by strong, trivalent Lewis acids such as Ga3+ and Sc3+ adjacent to serine results in the N, O acyl shift and hydrolysis of the corresponding ester without dissociation of the corresponding metal complex. Compound [68Ga]Ga-10, incorporating a cleavable and noncleavable functionalization, was used to demonstrate that only the amide bond-adjacent serine effectively triggered hydrolysis in solution and from the solid phase. The corresponding solid-phase released compound [68Ga]Ga-8 demonstrated superior in vivo performance in a mouse tumor model compared to [68Ga]Ga-8 produced using conventional, solution-phase radiolabeling. A second proof-of-concept system, [67Ga]Ga-17A (serine-linked) and [67Ga]Ga-17B (glycine-linked) binding to serum albumin via the incorporated ibuprofen moiety, was also synthesized. These constructs demonstrated that complete hydrolysis of the corresponding [68Ga]Ga-NOTA complex from [67Ga]Ga-17A can be achieved in naïve mice within 12 h, as traceable in urine and blood metabolites. The glycine-linked control [68Ga]Ga-17B remained intact. Conclusively, MMAAC provides an attractive tool for selective, thermal, and metal ion-mediated control of metallodrug activation compatible with biological conditions.


Assuntos
Amidas , Complexos de Coordenação , Camundongos , Animais , Radioisótopos de Gálio/química , Preparações de Ação Retardada , Metais/química , Complexos de Coordenação/química , Catálise
5.
J Biol Chem ; 299(9): 104998, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394009

RESUMO

Chlorotoxin (CTX), a scorpion venom-derived 36-residue miniprotein, binds to and is taken up selectively by glioblastoma cells. Previous studies provided controversial results concerning target protein(s) of CTX. These included CLC3 chloride channel, matrix metalloproteinase 2 (MMP-2), regulators of MMP-2, annexin A2, and neuropilin 1 (NRP1). The present study aimed at clarifying which of the proposed binding partners can really interact with CTX using biochemical methods and recombinant proteins. For this purpose, we established two new binding assays based on anchoring the tested proteins to microbeads and quantifying the binding of CTX by flow cytometry. Screening of His-tagged proteins anchored to cobalt-coated beads indicated strong interaction of CTX with MMP-2 and NRP1, whereas binding to annexin A2 was not confirmed. Similar results were obtained with fluorophore-labeled CTX and CTX-displaying phages. Affinity of CTX to MMP-2 and NRP1 was assessed by the "immunoglobulin-coated bead" test, in which the proteins were anchored to beads by specific antibodies. This assay yielded highly reproducible data using both direct titration and displacement approach. The affinities of labeled and unlabeled CTX appeared to be similar for both MMP-2 and NRP1 with estimated KD values of 0.5 to 0.7 µM. Contrary to previous reports, we found that CTX does not inhibit the activity of MMP-2 and that CTX not only with free carboxyl end but also with carboxamide terminal end binds to NRP1. We conclude that the presented robust assays could also be applied for affinity-improving studies of CTX to its genuine targets using phage display libraries.


Assuntos
Glioblastoma , Metaloproteinase 2 da Matriz , Neuropilina-1 , Venenos de Escorpião , Humanos , Glioblastoma/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Neuropilina-1/metabolismo , Venenos de Escorpião/metabolismo , Linhagem Celular Tumoral , Ligação Proteica
6.
RSC Chem Biol ; 4(6): 414-421, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37292057

RESUMO

Short-lived, radioactive lanthanides comprise an emerging class of radioisotopes attractive for biomedical imaging and therapy applications. To deliver such isotopes to target tissues, they must be appended to entities that target antigens overexpressed on the target cell's surface. However, the thermally sensitive nature of biomolecule-derived targeting vectors requires the incorporation of these isotopes without the use of denaturing temperatures or extreme pH conditions; chelating systems that can capture large radioisotopes under mild conditions are therefore highly desirable. Herein, we demonstrate the successful radiolabeling of the lanthanide-binding protein, lanmodulin (LanM), with medicinally relevant radioisotopes: 177Lu, 132/135La and 89Zr. Radiolabeling of the endogenous metal-binding sites of LanM, as well exogenous labeling of a protein-appended chelator, was successfully conducted at 25 °C and pH 7 with radiochemical yields ranging from 20-82%. The corresponding radiolabeled constructs possess good formulation stability in pH 7 MOPS buffer over 24 hours (>98%) in the presence of 2 equivalents of natLa carrier. In vivo experiments with [177Lu]-LanM, [132/135La]-LanM, and a prostate cancer targeting-vector linked conjugate, [132/135La]-LanM-PSMA, reveal that endogenously labeled constructs produce bone uptake in vivo. Exogenous, chelator-tag mediated radiolabeling to produce [89Zr]-DFO-LanM enables further study of the protein's in vivo behavior, demonstrating low bone and liver uptake, and renal clearance of the protein itself. While these results indicate that additional stabilization of LanM is required, this study establishes precedence for the radiochemical labeling of LanM with medically relevant lanthanide radioisotopes.

7.
Chem Sci ; 14(19): 5038-5050, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37206398

RESUMO

The efficient, large-scale synthesis of radiometallated radiopharmaceuticals represents an emerging clinical need which, to date, is inherently limited by time consuming, sequential procedures to conduct isotope separation, radiochemical labeling and purification prior to formulation for injection into the patient. In this work, we demonstrate that a solid-phase based, concerted separation and radiosynthesis strategy followed by photochemical release of radiotracer in biocompatible solvents can be employed to prepare ready-to-inject, clinical grade radiopharmaceuticals. Optimization of resin base, resin loading, and radiochemical labeling capacity are demonstrated with 67Ga and 64Cu radioisotopes using a short model peptide sequence and further validated using two peptide-based radiopharmaceuticals with clinical relevance, targeting the gastrin-releasing peptide and the prostate specific membrane antigen. We also demonstrate that the solid-phase approach enables separation of non-radioactive carrier ions Zn2+ and Ni2+ present at 105-fold excess over 67Ga and 64Cu by taking advantage of the superior Ga3+ and Cu2+ binding affinity of the solid-phase appended, chelator-functionalized peptide. Finally, a proof of concept radiolabeling and subsequent preclinical PET-CT study with the clinically employed positron emitter 68Ga successfully exemplifies that Solid Phase Radiometallation Photorelease (SPRP) allows the streamlined preparation of radiometallated radiopharmaceuticals by concerted, selective radiometal ion capture, radiolabeling and photorelease.

8.
Eur J Inorg Chem ; 26(35)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38495596

RESUMO

To harness radiometals in clinical settings, a chelator forming a stable complex with the metal of interest and targets the desired pathological site is needed. Toward this goal, we previously reported a unique set of chelators that can stably bind to both large and small metal ions, via a conformational switch. Within this chelator class, py-macrodipa is particularly promising based on its ability to stably bind several medicinally valuable radiometals including large 132/135La3+, 213Bi3+, and small 44Sc3+. Here, we report a 10-step organic synthesis of its bifunctional analogue py-macrodipa-NCS, which contains an amine-reactive -NCS group that is amenable for bioconjugation reactions to targeting vectors. The hydrolytic stability of py-macordipa-NCS was assessed, revealing a half-life of 6.0 d in pH 9.0 aqueous buffer. This bifunctional chelator was then conjugated to a prostate-specific membrane antigen (PSMA)-binding moiety, yielding the bioconjugate py-macrodipa-PSMA, which was subsequently radiolabeled with large 132/135La3+ and small 47Sc3+, revealing efficient and quantitative complex formation. The resulting radiocomplexes were injected into mice bearing both PSMA-expressing and PSMA-non-expressing tumor xenografts to determine their biodistribution patterns, revealing delivery of both 132/135La3+ and 47Sc3+ to PSMA+ tumor sites. However, partial radiometal dissociation was observed, suggesting that py-macrodipa-PSMA needs further structural optimization.

9.
Chem Commun (Camb) ; 58(99): 13728-13730, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36426996

RESUMO

The nine-coordinate aza-macrocycle DO3Apic-NO2 and its kinetically inert rare earth complexes [M(DO3A-pic-NO2)]- (M = La, Tb, Eu, Lu, Y) can be readily bioconjugated to surface accessible thioles on peptides and proteins with a minimal structural footprint. All complexes express thioconjugation rate constants in the same order of magnitude (k = 0.3 h-1) with the exception of Sc (k = 0.89 h-1). Coupling to peptides and biologics with accessible cysteines also enables post-radiochelation bioconjugation at room temperature to afford injection-ready radiopharmaceuticals as demonstrated by formation of [177Lu][Lu(DO3Apic-NO2)]- and [86Y][Y(DO3Apic-NO2)]-, followed by post-labeling conjugation to a cysteine-functionalized peptide targeting the prostate specific membrane antigen. The 86Y-labeled construct efficiently localizes in target tumors with no significant off-target accumulation as evidenced by positron emission tomography, biodistribution studies and metabolite analysis.


Assuntos
Metais Terras Raras , Compostos Radiofarmacêuticos , Masculino , Humanos , Distribuição Tecidual , Compostos Radiofarmacêuticos/química , Tomografia por Emissão de Pósitrons , Peptídeos/metabolismo
10.
Mol Pharm ; 19(9): 3217-3227, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35895995

RESUMO

An immunosuppressive tumor microenvironment and tumor heterogeneity have led to the resilience of metastatic castrate resistant prostate cancer (mCRPC) to current treatments. To address these challenges, we developed and evaluated a new drug paradigm, Radio-IMmunostimulant (RIMS), in a syngeneic model of murine prostate cancer. RIMS-1 was generated using a convergent synthesis employing solid phase peptide and solution chemistries. The prostate-specific membrane antigen (PSMA) inhibitory constant for natLu-RIMS-1 was determined, and radiolabeling with 177Lu generated 177Lu-RIMS-1. The TLR 7/8 agonist payload release from natLu-RIMS-1 was determined using a cathepsin B assay. The biodistribution of 177Lu-RIMS-1 was evaluated in a bilateral xenograft model in NCru nude mice bearing PSMA(+) (PC3-PiP) and PSMA(-) (PC3-Flu) tumors at 2, 24, and 72 h. The therapeutic effect of 177Lu-RIMS-1 was evaluated in C57BL/6J mice bearing RM1-PGLS (PSMA-positive, green fluorescent protein-positive, and luciferase-positive) tumors and compared to that of 177Lu-PSMA-617 at the same total administered radioactivity of 57 MBq and molar activity of 5.18 MBq/nmol. natLu-RIMS-1 and vehicle were evaluated as the controls. Immuno-positron emission tomography (PET) using 89Zr-DFO-anti-CD3 was used to visualize T-cell distribution during treatment. 177Lu-RIMS-1 was quantitatively radiolabeled at >99% radiochemical purity and maintained a high affinity toward PSMA (Ki = 3.77 ± 0.5 nM). Cathepsin B efficiently released the entire immunostimulant payload in 17.6 h. 177Lu-RIMS-1 displayed a sustained uptake in PSMA(+) tumor tissue up to 72 h (2.65 ± 1.03% ID/g) and was not statistically different (P = 0.1936) compared to 177Lu-PSMA-617 (3.65 ± 0.59% ID/g). All animals treated with 177Lu-RIMS-1 displayed tumor growth suppression and provided a median survival of 30 days (P = 0.0007) while 177Lu-PSMA-617 provided a median survival of 15 days, which was not statistically significant (P = 0.3548) compared to the vehicle group (14 days). ImmunoPET analysis revealed 2-fold more tumor infiltrating T-cells in 177Lu-RIMS-1-treated animals compared to 177Lu-PSMA-617-treated animals; 177Lu-RIMS-1 improves therapeutic outcomes in a syngeneic model of mouse prostate cancer and elicits greater T-cell infiltration to the tumor compared to 177Lu-PSMA-617. These results support further investigation of the RIMS paradigm as the first example of a single molecular entity combining radiotherapy and immunostimulation.


Assuntos
Catepsina B , Neoplasias da Próstata , Adjuvantes Imunológicos/uso terapêutico , Animais , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Glutamato Carboxipeptidase II/metabolismo , Humanos , Lutécio/química , Lutécio/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Antígeno Prostático Específico , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/química , Linfócitos T/metabolismo , Distribuição Tecidual , Microambiente Tumoral
11.
ACS Chem Biol ; 17(4): 969-986, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35378038

RESUMO

MASP-1 and MASP-2 are key activator proteases of the complement lectin pathway. The first specific mannose-binding lectin-associated serine protease (MASP) inhibitors had been developed from the 14-amino-acid sunflower trypsin inhibitor (SFTI) peptide by phage display, yielding SFTI-based MASP inhibitors, SFMIs. Here, we present the crystal structure of the MASP-1/SFMI1 complex that we analyzed in comparison to other existing MASP-1/2 structures. Rigidified backbone structure has long been accepted as a structural prerequisite for peptide inhibitors of proteases. We found that a hydrophobic cluster organized around the P2 Thr residue is essential for the structural stability of wild-type SFTI. We also found that the same P2 Thr prevents binding of the rigid SFTI-like peptides to the substrate-binding cleft of both MASPs as the cleft is partially blocked by large gatekeeper enzyme loops. Directed evolution removed this obstacle by replacing the P2 Thr with a Ser, providing the SFMIs with high-degree structural plasticity, which proved to be essential for MASP inhibition. To gain more insight into the structural criteria for SFMI-based MASP-2 inhibition, we systematically modified MASP-2-specific SFMI2 by capping its two termini and by replacing its disulfide bridge with varying length thioether linkers. By doing so, we also aimed to generate a versatile scaffold that is resistant to reducing environment and has increased stability in exopeptidase-containing biological environments. We found that the reduction-resistant disulfide-substituted l-2,3-diaminopropionic acid (Dap) variant possessed near-native potency. As MASP-2 is involved in the life-threatening thrombosis in COVID-19 patients, our synthetic, selective MASP-2 inhibitors could be relevant coronavirus drug candidates.


Assuntos
Serina Proteases Associadas a Proteína de Ligação a Manose , Peptídeos , Dissulfetos , Humanos , Lectinas , Serina Proteases Associadas a Proteína de Ligação a Manose/antagonistas & inibidores , Serina Proteases Associadas a Proteína de Ligação a Manose/química , Peptídeos/química , Peptídeos/farmacologia
12.
Nucl Med Biol ; 108-109: 16-23, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35189565

RESUMO

PURPOSE: Positron Emission Tomography is an important molecular imaging technique for detection and diagnoses of various disease states. This work aims to develop novel titanium-45 (t½ = 3.08 h) PET tracers using Prostate Specific Membrane Antigen (PSMA) targeting vectors for imaging of prostate cancer as proof of concept for this relatively unexplored isotope. PROCEDURES: Titanium-45 was produced on the University of Alabama at Birmingham (UAB) TR24 cyclotron using proton bombardments on natural scandium foils and separated using procedures described previously [1]. After purification, Titanium-45 was used to radiolabel two PSMA-targeting molecules; DFO-DUPA and LDFC-DUPA. Radiochemical yields were determined via radio-high purity liquid chromatography (radioHPLC). The radiolabeled compounds were tested both in vitro and in vivo using PSMA+ cell lines (LNCaP and 22Rv1) and PSMA- cell lines (PC3). RESULTS: Titanium-45 was produced and purified in yields suitable for research studies. Radiochemical yields of up to 98 ± 1% were achieved with DFO-DUPA and 92 ± 7% with LDFC-DUPA. PSMA specific targeting was observed in vitro in PSMA positive cells (LNCaP (0.6% ± 0.05%) and confirmed by blocking (0.15% ± 0.04%) (P < 0.0001)), compared to uptake in the PSMA negative cells (PC3 (0.07% ± 0.008%)) and confirmed by blocking (0.07% ± 0.01%) (P = 0.5253). In vivo studies demonstrated statistically significant uptake in LNCaP tumors (2.3% ± 0.3% ID/g) compared to PC3 tumor uptake (0.1% ± 0.07%). CONCLUSIONS: This work shows that titanium-45 can be used to radiolabel PSMA targeting compounds with high radiochemical yields. These radiolabeled compounds remain intact in serum for at least two half-lives of titanium-45, showing that these compounds would be appropriate for implementation in the clinical setting. This study shows the feasibility of using titanium-45 as positron emitting radiometal for use in imaging PSMA+ prostate cancer, and illustrates that further research is in this area is warranted.


Assuntos
Antígenos de Superfície , Glutamato Carboxipeptidase II , Neoplasias da Próstata , Titânio , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Glutamato Carboxipeptidase II/metabolismo , Humanos , Masculino , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Compostos Radiofarmacêuticos/química
13.
Angew Chem Int Ed Engl ; 61(7): e202114203, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34889014

RESUMO

Fluorine-18 remains the most widely clinically utilized radionuclide globally for positron emission tomography (PET). The emergence of therapeutic isotopes for the management of disease has produced a pronounced interest in matched, theranostic isotope pairs that can be employed in tandem for the diagnosis and stratification of patients for subsequent radiotherapy. 18 F, however, does not have a suitable therapeutic isotopologue. Here, we demonstrate that the formation of [18 F][Sc-F] ternary complexes is feasible under mild, aqueous conditions, producing chemically robust radiopharmaceuticals in high radiochemical yield and specific activity. A corresponding in vivo study with a cancer-targeting [18 F][Sc-F] tracer indicates excellent in vivo stability and produces exquisite PET image quality, rendering the 18 F/47 Sc isotope pair an unusual, yet chemically matched theranostic pair with excellent potential for clinical translation.


Assuntos
Flúor/química , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Escândio/química , Radioisótopos de Flúor , Humanos
14.
World J Gastroenterol ; 27(40): 6985-6999, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34790019

RESUMO

BACKGROUND: Despite the improvement in the endoscopic hemostasis of non-variceal upper gastrointestinal bleeding (NVUGIB), rebleeding remains a major concern. AIM: To assess the role of prophylactic transcatheter arterial embolization (PTAE) added to successful hemostatic treatment among NVUGIB patients. METHODS: We searched three databases from inception through October 19th, 2020. Randomized controlled trials (RCTs) and observational cohort studies were eligible. Studies compared patients with NVUGIB receiving PTAE to those who did not get PTAE. Investigated outcomes were rebleeding, mortality, reintervention, need for surgery and transfusion, length of hospital (LOH), and intensive care unit (ICU) stay. In the quantitative synthesis, odds ratios (ORs) and weighted mean differences (WMDs) were calculated with the random-effects model and interpreted with 95% confidence intervals (CIs). RESULTS: We included a total of 3 RCTs and 9 observational studies with a total of 1329 patients, with 486 in the intervention group. PTAE was associated with lower odds of rebleeding (OR = 0.48, 95%CI: 0.29-0.78). There was no difference in the 30-d mortality rates (OR = 0.82, 95%CI: 0.39-1.72) between the PTAE and control groups. Patients who underwent PTAE treatment had a lower chance for reintervention (OR = 0.48, 95%CI: 0.31-0.76) or rescue surgery (OR = 0.35, 95%CI: 0.14-0.92). The LOH and ICU stay was shorter in the PTAE group, but the difference was non-significant [WMD = -3.77, 95%CI: (-8.00)-0.45; WMD = -1.33, 95%CI: (-2.84)-0.18, respectively]. CONCLUSION: PTAE is associated with lower odds of rebleeding and any reintervention in NVUGIB. However, further RCTs are needed to have a higher level of evidence.


Assuntos
Embolização Terapêutica , Hemostase Endoscópica , Trato Gastrointestinal Superior , Embolização Terapêutica/efeitos adversos , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/prevenção & controle , Humanos , Recidiva , Procedimentos Cirúrgicos Vasculares
15.
Mol Pharm ; 18(12): 4511-4519, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34714082

RESUMO

Lu-177-based, targeted radiotherapeutics/endoradiotherapies are an emerging clinical tool for the management of various cancers. The chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) remains the workhorse for such applications but can limit apparent molar activity or efficient charge modulation, which can impact target binding and, as a consequence, target efficacy. Previously, our lab had developed the small, rare earth selective bifunctional chelator, picaga, as an efficient bifunctional chelator for scandium and lutetium isotopes. Here, we assess the performance of these constructs for therapy in prostate-specific membrane antigen (PSMA)-expressing tumor xenografts. To assess the viability of picaga conjugates in conjunction with long in vivo circulation, a picaga conjugate functionalized with a serum albumin binding moiety, 177Lu-picaga-Alb53-PSMA, was also synthesized. A directly comparative, low, single 3.7 MBq dose treatment study with Lu-PSMA-617 was conducted. Treatment with 177Lu-picaga-Alb53-PSMA resulted in tumor regression and lengthened median survival (54 days) when compared with the vehicle (16 days), 47Sc-picaga-DUPA-, 177Lu-picaga-DUPA-, and 177Lu-PSMA-617-treated cohorts (21, 23, and 21 days, respectively).


Assuntos
Quelantes/química , Dipeptídeos/uso terapêutico , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Lutécio/uso terapêutico , Antígeno Prostático Específico/uso terapêutico , Neoplasias da Próstata/radioterapia , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Escândio/uso terapêutico , Animais , Dipeptídeos/farmacocinética , Compostos Heterocíclicos com 1 Anel/farmacocinética , Humanos , Masculino , Camundongos , Antígeno Prostático Específico/farmacocinética , Neoplasias da Próstata/mortalidade , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
16.
J Am Chem Soc ; 143(24): 9206-9214, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34114809

RESUMO

Recently, we pioneered the application of Cherenkov radiation (CR) of radionuclides for the in situ excitation of discrete Eu(III) and Tb(III) complexes. CR is produced by isotopes decaying under emission of charged particles in dielectric media and exhibits a maximum intensity below 400 nm. We have demonstrated that luminescent lanthanide antenna complexes are ideal acceptors for Cherenkov radiation-mediated energy transfer (CRET). Here, we develop and assess peptide-functionalized Tb(III) and Eu(III) complexes in conjunction with CRET excitation by the positron emissive radioisotope 18F for simultaneous, multiplexed imaging and in vivo optical imaging. This work demonstrates, for the first time, that the detection of the luminescence emission of a discrete Eu(III) complex in vivo is feasible. Our results open possibilities for discrete luminescent lanthanide complexes to be used as diagnostic, optical tools for the intrasurgical guidance of tumor resection.


Assuntos
Complexos de Coordenação/química , Elementos da Série dos Lantanídeos/química , Imagem Óptica , Peptídeos/química , Animais , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Transferência de Energia , Ligantes , Masculino , Camundongos , Camundongos Nus , Conformação Molecular , Neoplasias Experimentais/diagnóstico por imagem
17.
Bioconjug Chem ; 32(7): 1232-1241, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33284001

RESUMO

The radioactive isotopes scandium-44/47 and lutetium-177 are gaining relevance for radioimaging and radiotherapy, resulting in a surge of studies on their coordination chemistry and subsequent applications. Although the trivalent ions of these elements are considered close homologues, dissimilar chemical behavior is observed when they are complexed by large ligand architectures due to discrepancies between Lu(III) and Sc(III) ions with respect to size, chemical hardness, and Lewis acidity. Here, we demonstrate that Lu and Sc complexes of 1,4-bis(methoxycarbonyl)-7-[(6-carboxypyridin-2-yl)methyl]-1,4,7-triazacyclononane (H3mpatcn) and its corresponding bioconjugate picaga-DUPA can be employed to promote analogous structural features and, subsequently, biological properties for coordination complexes of these ions. The close homology was evidenced using potentiometric methods, computational modeling, variable temperature mass spectrometry, and pair distribution function analysis of X-ray scattering data. Radiochemical labeling, in vitro stability, and biodistribution studies with Sc-47 and Lu-177 indicate that the 7-coordinate ligand environment of the bifunctional picaga ligand is compatible with biological applications and the future investigation of ß-emitting, picaga-chelated Sc and Lu isotopes for radiotherapy.


Assuntos
Quelantes/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Lutécio/química , Medicina de Precisão , Compostos Radiofarmacêuticos/química , Escândio/química , Ligantes , Estrutura Molecular
18.
Inorg Chem ; 59(22): 16095-16108, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33112609

RESUMO

A growing number of copper(II) complexes have been identified as suitable candidates for biomedical applications. Here, we show that the biocompatibility and stability of copper(II) complexes can be tuned by directed ligand design and complex geometry. We demonstrate that azamacrocycle-based chelators that envelope copper(II) in a five-coordinate, distorted trigonal-bipyramidal structure are more chemically inert to redox-mediated structural changes than their six-coordinate, Jahn-Teller-distorted counterparts, as evidenced by electrochemical, crystallographic, electron paramagnetic resonance, and density functional theory studies. We further validated our hypothesis of enhanced inertness in vitro and in vivo by employing Cu-64 radiolabeling of bifunctional analogues appended to a prostate-specific membrane antigen targeting dipeptide. The corresponding Cu-64 complexes were tested for stability in vitro and in vivo, with the five-coordinate system demonstrating the greatest metabolic stability among the studied picolinate complex series.


Assuntos
Quelantes/metabolismo , Complexos de Coordenação/metabolismo , Cobre/metabolismo , Ácidos Picolínicos/metabolismo , Quelantes/química , Complexos de Coordenação/química , Cobre/química , Cristalografia por Raios X , Teoria da Densidade Funcional , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredução , Ácidos Picolínicos/química
19.
Chem ; 6(1): 41-60, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-32864503

RESUMO

Metal-based drugs and imaging agents are extensively used in the clinic for the treatment and diagnosis of cancers and a wide range of other diseases. The current clinical arsenal of compounds operate via a limited number of mechanisms, whereas new putative compounds explore alternative mechanisms of action, which could potentially bring new chemotherapeutic approaches into the clinic. In this review, metal-based drugs and imaging agents are characterized according to their primary mode of action and the key properties and features of each class of compounds are defined, wherever possible. A better understanding of the roles played by metal compounds at a mechanistic level will help to deliver new metal-based therapies to the clinic, by providing an alternative, targeted and rational approach, to supplement non-targeted screening of novel chemical entities for biological activity.

20.
Chem Sci ; 11(2): 333-342, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32953004

RESUMO

Scandium-44 has emerged as an attractive, novel PET radioisotope with ideal emission properties and half-life (t 1/2 = 3.97 h, E mean ß+ = 632 keV) well matched to the pharmacokinetics of small molecules, peptides and small biologics. Conjugates of the current gold-standard chelator for 44Sc, 1,4,7,10-tetraaza-cyclododecane-1,4,7,10-tetraacetic acid (DOTA), require heating to achieve radiochemical complexation, limiting application of this isotope in conjunction with temperature-sensitive biologics. To establish Sc(iii) isotopes as broadly applicable tools for nuclear medicine, development of alternative bifunctional chelators is required. To address this need, we characterized the Sc(iii)-chelation properties of the small-cavity triaza-macrocycle-based, picolinate-functionalized chelator H3mpatcn. Spectroscopic and radiochemical studies establish the [Sc(mpatcn)] complex as kinetically inert and appropriate for biological applications. A proof-of-concept bifunctional conjugate targeting the prostate-specific membrane antigen (PSMA), picaga-DUPA, chelates 44Sc to form 44Sc(picaga)-DUPA at room temperature with an apparent molar activity of 60 MBq µmol-1 and formation of inert RRR-Λ and SSS-Δ-twist isomers. Sc(picaga)-DUPA exhibits a K i of 1.6 nM for PSMA, comparable to the 18F-based imaging probe DCFPyL (K i = 1.1 nM) currently in phase 3 clinical trials for imaging prostate cancer. Finally, we successfully employed 44Sc(picaga)-DUPA to image PSMA-expressing tumors in a preclinical mouse model, establishing the picaga bifunctional chelator as an optimal choice for the 44Sc PET nuclide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA