Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nephrol ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289297

RESUMO

BACKGROUND: Kidney transplant recipients (KTRs) rely on immunosuppressants like mycophenolate to prevent organ rejection. However, mycophenolate often causes intestinal symptoms and inflammation in various organs, including the skin and the colon. While KTRs have an increased risk for skin cancer, the risk of colorectal cancer is not increased. Elucidating the histological alterations in the colon of KTRs and comparing these changes with known skin alterations would help understand how immunosuppressants influence cancer development and progression. METHODS: Whole slide images from gut biopsies (Non-transplanted subjects n = 35, KTRs n = 49) were analyzed using the ImageJ and R programming environment. A total of 22,035 epithelial cells, 38,870 interstitial cells, 3465 epithelial cell mitoses, and 7477 endothelial cells, each characterized by multiple microscopy parameters, from a total of 1788 glands were analyzed. The large database was subsequently analyzed to verify the changes of inflammatory milieu in KTRs and in cancer. RESULTS: KTRs without colon-cancer showed a significantly higher density of interstitial cells in the colon compared to non-transplanted patients. Moreover, the increase in interstitial cell number was accompanied by subtle modifications in the architecture of the colon glands, without altering the epithelial cell density. We could not identify significant structural modifications in cancer samples between KTRs and non-transplanted patients. CONCLUSIONS: Our findings demonstrate an increased number of resident interstitial cells in the colon of KTRs, as in other patients treated with mycophenolate. These changes are associated with subtle alterations in the architecture of colon glands.

2.
Toxins (Basel) ; 15(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36977089

RESUMO

Impaired polymorphonuclear leukocyte (PMNL) functions contribute to increased infections and cardiovascular diseases in chronic kidney disease (CKD). Uremic toxins reduce hydrogen sulfide (H2S) levels and the anti-oxidant and anti-inflammatory effects of H2S. Its biosynthesis occurs as a side process of transsulfuration and in the disposal of adenosylhomocysteine, a transmethylation inhibitor and proposed uremic toxin. PMNL chemotaxis was measured by the under-agarose method, phagocytosis, and oxidative burst by flow cytometry in whole blood and apoptosis by determining DNA content by flow cytometry and morphological features by fluorescence microscopy. Sodium hydrogen sulfide (NaHS), diallyl trisulphide (DATS) and diallyl disulphide (DADS), cysteine, and GYY4137 were used as H2S-producing substances. Increased H2S concentrations did not affect chemotaxis and phagocytosis. NaHS primed PMNL oxidative burst activated by phorbol 12-myristate 13-acetate (PMA) or E. coli. Both DATS and cysteine significantly decreased E. coli-activated oxidative burst but had no effect on PMA stimulation. While NaHS, DADS, and cysteine attenuated PMNL apoptosis, GYY4137 decreased their viability. Experiments with signal transduction inhibitors suggest that the intrinsic apoptosis pathway is mainly involved in GYY4137-induced PMNL apoptosis and that GYY4137 and cysteine target signaling downstream of phosphoinositide 3-kinase.


Assuntos
Sulfeto de Hidrogênio , Neutrófilos , Cisteína/farmacologia , Cisteína/metabolismo , Escherichia coli , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
3.
Genes (Basel) ; 15(1)2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38254927

RESUMO

Fabry Disease (FD) is a rare lysosomal storage disorder caused by mutations in the GLA gene on the X chromosome, leading to a deficiency in α-galactosidase A (AGAL) enzyme activity. This leads to the accumulation of glycosphingolipids, primarily globotriaosylceramide (Gb3), in vital organs such as the kidneys, heart, and nervous system. While FD was initially considered predominantly affecting males, recent studies have uncovered that heterozygous Fabry women, carrying a single mutated GLA gene, can manifest a wide array of clinical symptoms, challenging the notion of asymptomatic carriers. The mechanisms underlying the diverse clinical manifestations in females remain not fully understood due to X-chromosome inactivation (XCI). XCI also known as "lyonization", involves the random inactivation of one of the two X chromosomes. This process is considered a potential factor influencing phenotypic variation. This review delves into the complex landscape of FD in women, discussing its genetic basis, the available biomarkers, clinical manifestations, and the potential impact of XCI on disease severity. Additionally, it highlights the challenges faced by heterozygous Fabry women, both in terms of their disease burden and interactions with healthcare professionals. Current treatment options, including enzyme replacement therapy, are discussed, along with the need for healthcare providers to be well-informed about FD in women, ultimately contributing to improved patient care and quality of life.


Assuntos
Doença de Fabry , Doenças por Armazenamento dos Lisossomos , Masculino , Humanos , Feminino , Doença de Fabry/diagnóstico , Doença de Fabry/genética , Qualidade de Vida , Rim , Biomarcadores
4.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35955913

RESUMO

Human angiogenin (ANG) is a 14-kDa ribonuclease involved in different pathophysiological processes including tumorigenesis, neuroprotection, inflammation, innate immunity, reproduction, the regeneration of damaged tissues and stress cell response, depending on its intracellular localization. Under physiological conditions, ANG moves to the cell nucleus where it enhances rRNA transcription; conversely, recent reports indicate that under stress conditions, ANG accumulates in the cytoplasmic compartment and modulates the production of tiRNAs, a novel class of small RNAs that contribute to the translational inhibition and recruitment of stress granules (SGs). To date, there is still limited and controversial experimental evidence relating to a hypothetical role of ANG in the epidermis, the outermost layer of human skin, which is continually exposed to external stressors. The present study collects compelling evidence that endogenous ANG is able to modify its subcellular localization on HaCaT cells, depending on different cellular stresses. Furthermore, the use of recombinant ANG allowed to determine as this special enzyme is effectively able to counter at various levels the alterations of cellular homeostasis in HaCaT cells, actually opening a new vision on the possible functions that this special enzyme can support also in the stress response of human skin.


Assuntos
RNA de Transferência , Ribonucleases , Humanos , Queratinócitos/metabolismo , Estresse Oxidativo , RNA de Transferência/genética , Ribonuclease Pancreático/metabolismo
5.
Genes (Basel) ; 13(7)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35886073

RESUMO

Poliomavirus BK virus (BKV) is highly infective, causing asymptomatic infections during childhood. After the initial infection, a stable state of latent infection is recognized in kidney tubular cells and the uroepithelium with negligible clinical consequences. BKV is an important risk factor for BKV-associated diseases, and, in particular, for BKV-associated nephropathy (BKVN) in renal transplanted recipients (RTRs). BKVN affects up to 10% of renal transplanted recipients, and results in graft loss in up to 50% of those affected. Unfortunately, treatments for BK virus infection are restricted, and there is no efficient prophylaxis. In addition, consequent immunosuppressive therapy reduction contributes to immune rejection. Increasing surveillance and early diagnosis based upon easy and rapid analyses are resulting in more beneficial outcomes. In this report, the current status and perspectives in the diagnosis and treatment of BKV in RTRs are reviewed.


Assuntos
Vírus BK , Nefropatias , Transplante de Rim , Infecções por Polyomavirus , Infecções Tumorais por Vírus , Vírus BK/genética , Humanos , Imunossupressores , Rim , Nefropatias/diagnóstico , Nefropatias/etiologia , Transplante de Rim/efeitos adversos , Infecções por Polyomavirus/diagnóstico , Infecções por Polyomavirus/epidemiologia , Infecções Tumorais por Vírus/diagnóstico
6.
Nutrients ; 12(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752227

RESUMO

Doxorubicin (doxo) is an effective anticancer compound in several tumor types. However, as a consequence of oxidative stress induction and ROS overproduction, its high cardiotoxicity demands urgent attention. Vanillin possesses antioxidant, antiproliferative, antidepressant and anti-glycating properties. Therefore, we investigated the potential vanillin protective effects against doxo-induced cardiotoxicity in H9c2 cells. Using multiparametric approach, we demonstrated that vanillin restored both cell viability and damage in response to doxo exposure. Contextually, vanillin decreased sub-G1 appearance and caspase-3 and PARP1 activation, reducing the doxo-related apoptosis induction. From a mechanistic point of view, vanillin hindered doxo-induced ROS accumulation and impaired the ERK phosphorylation. Notably, besides the cardioprotective effects, vanillin did not counteract the doxo effectiveness in osteosarcoma cells. Taken together, our results suggest that vanillin ameliorates doxo-induced toxicity in H9c2 cells, opening new avenues for developing alternative therapeutic approaches to prevent the anthracycline-related cardiotoxicity and to improve the long-term outcome of antineoplastic treatment.


Assuntos
Apoptose/efeitos dos fármacos , Benzaldeídos/farmacologia , Doxorrubicina/efeitos adversos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antraciclinas/efeitos adversos , Antioxidantes/farmacologia , Cardiotoxicidade/prevenção & controle , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ratos
7.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629793

RESUMO

Hydroxytyrosol (HT), one of the main phenolic components of olive oil, has attracted considerable interest for its biological properties, including a remarkable antioxidant and anti-inflammatory power and, recently, for its ability to interfere with the amyloid aggregation underlying several human diseases. We report here a broad biophysical approach and cell biology techniques that allowed us to characterize the molecular mechanisms by which HT affects insulin amyloid aggregation and the related cytotoxicity. Our data show that HT is able to fully inhibit insulin amyloid aggregation and this property seems to be ascribed to the stabilization of the insulin monomeric state. Moreover, HT completely reverses the toxic effect produced by amyloid insulin aggregates in neuroblastoma cell lines by fully inhibiting the production of toxic amyloid species. These findings suggest that the beneficial effects of olive oil polyphenols, including HT, may arise from multifunctional activities and suggest possible a application of this natural compound in the prevention or treatment of amyloid-associated diseases.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Insulina/metabolismo , Álcool Feniletílico/análogos & derivados , Amiloide , Amiloidose , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Humanos , Insulina/farmacologia , Insulina/fisiologia , Azeite de Oliva/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Álcool Feniletílico/metabolismo , Álcool Feniletílico/farmacologia , Polifenóis/farmacologia , Agregação Patológica de Proteínas/metabolismo
8.
J Cell Physiol ; 234(4): 3814-3828, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30256388

RESUMO

Glycosaminoglycans are extracellular matrix components related to several biological functions and diseases. Chondroitin sulfate is a sulphated glycosaminoglycan synthesized as part of proteoglycan molecules. They are frequently associated with amyloid deposits and possess an active role in amyloid fibril formation. Recently, a neuroprotective effect of extracellular matrix components against amyloid toxicity and oxidative stress has been reported. Advanced glycation end products (AGEs), the end products of the glycation reaction, have been linked to amyloid-based neurodegenerative disease as associated with oxidative stress and inflammation. In this study we have analyzed the effect of chondroitin sulfate isolated from different species, in comparison with a new biotechnological unsulfated chondroitin, in the amyloid aggregation process of insulin, as well as the ability to prevent the formation of AGEs and related toxicity. The results have showed a determining role of chondroitin sulfate groups in modulating insulin amyloid aggregation. In addition, both sulfated and unsulfated chondroitins have shown protective properties against amyloid and AGEs-induced toxicity. These data are very relevant as a protective effect of these glycosaminoglycans in the AGE-induced toxicity was never observed before. Moreover, considering the issues related to the purity and safety of chondroitin from natural sources, this study suggests a new potential application for the biotechnological chondroitin.


Assuntos
Amiloide/toxicidade , Sulfatos de Condroitina/farmacologia , Neuropatias Diabéticas/prevenção & controle , Produtos Finais de Glicação Avançada/toxicidade , Insulina/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Bovinos , Linhagem Celular Tumoral , Sulfatos de Condroitina/isolamento & purificação , Citoproteção , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/patologia , Humanos , Neurônios/metabolismo , Neurônios/ultraestrutura , Agregados Proteicos , Agregação Patológica de Proteínas , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Tubarões , Sus scrofa
9.
Int J Mol Sci ; 18(12)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182566

RESUMO

Human insulin is a widely used model protein for the study of amyloid formation as both associated to insulin injection amyloidosis in type II diabetes and highly prone to form amyloid fibrils in vitro. In this study, we aim to gain new structural insights into insulin fibril formation under two different aggregating conditions at neutral and acidic pH, using a combination of fluorescence, circular dichroism, Fourier-transform infrared spectroscopy, and transmission electron miscroscopy. We reveal that fibrils formed at neutral pH are morphologically different from those obtained at lower pH. Moreover, differences in FTIR spectra were also detected. In addition, only insulin fibrils formed at neutral pH showed the characteristic blue-green fluorescence generally associated to amyloid fibrils. So far, the molecular origin of this fluorescence phenomenon has not been clarified and different hypotheses have been proposed. In this respect, our data provide experimental evidence that allow identifying the molecular origin of such intrinsic property.


Assuntos
Amiloide/metabolismo , Insulina/metabolismo , Dicroísmo Circular , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Dobramento de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Sci Rep ; 7(1): 15086, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118444

RESUMO

Curcumin is known for its anti-inflammatory, antioxidant and anticancer activity, as well as for its ability to interfere with amyloid aggregation and non-enzymatic glycation reaction, that makes it an attractive potential drug. However, curcumin therapeutic use is limited because of its low systemic bioavailability and chemical stability as it undergoes rapid hydrolysis in physiological conditions. Recently, much attention has been paid to the biological properties of curcumin degradation products as potential bioactive molecules. Between them, vanillin, a natural vanilla extract, is a stable degradation product of curcumin that could be responsible for mediating its beneficial effects. We have analyzed the effect of vanillin, in comparison with curcumin, in the amyloid aggregation process of insulin as well as its ability to prevent the formation of the advanced glycation end products (AGEs). Employing biophysical, biochemical and cell based assays, we show that vanillin and curcumin similarly affect insulin amyloid aggregation promoting the formation of harmless fibrils. Moreover, vanillin restrains AGE formation and protects from AGE-induced cytotoxicity. Our novel findings not only suggest that the main health benefits observed for curcumin can be ascribed to its degradation product vanillin, but also open new avenues for developing therapeutic applications of curcumin degradation products.


Assuntos
Amiloide/efeitos dos fármacos , Benzaldeídos/farmacologia , Insulina/metabolismo , Agregados Proteicos/efeitos dos fármacos , Amiloide/química , Amiloide/ultraestrutura , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Transmissão
11.
J Cell Physiol ; 230(11): 2807-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25846844

RESUMO

Protein glycation is a non-enzymatic, irreversible modification of protein amino groups by reactive carbonyl species leading to the formation of advanced glycation end products (AGEs). Several proteins implicated in neurodegenerative diseases have been found to be glycated in vivo and the extent of glycation is related to the pathologies of the patients. Although it is now accepted that there is a direct correlation between AGEs formation and the development of neurodegenerative diseases related to protein misfolding and amyloid aggregation, several questions still remain unanswered: whether glycation is the triggering event or just an additional factor acting on the aggregation pathway. We have recently shown that glycation of the amyloidogenic W7FW14F apomyoglobin mutant significantly accelerates the amyloid fibrils formation providing evidence that glycation actively participates to the process. In the present study, to test if glycation can be considered also a triggering factor in amyloidosis, we evaluated the ability of different glycation agents to induce amyloid aggregation in the soluble wild-type apomyoglobin. Our results show that glycation covalently modifies apomyoglobin and induces conformational changes that lead to the formation of oligomeric species that are not implicated in amyloid aggregation. Thus, AGEs formation does not trigger amyloid aggregation in the wild-type apomyoglobin but only induce the formation of soluble oligomeric species able to affect cell viability. The molecular bases of cell toxicity induced by AGEs formed upon glycation of wild-type apomyoglobin have been also investigated.


Assuntos
Amiloide/metabolismo , Apoproteínas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Mioglobina/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Apoproteínas/química , Apoproteínas/genética , Sobrevivência Celular , Dicroísmo Circular , Glicosilação , Humanos , Camundongos , Mutação , Mioglobina/química , Mioglobina/genética , Células NIH 3T3 , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA