Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 81(14): 2975-2988.e6, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34157308

RESUMO

The heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual initiation sites make mapping the location and timing of replication initiation in human cells difficult. To address this challenge, we have developed optical replication mapping (ORM), a high-throughput single-molecule approach, and used it to map early-initiation events in human cells. The single-molecule nature of our data and a total of >2,500-fold coverage of the human genome on 27 million fibers averaging ∼300 kb in length allow us to identify initiation sites and their firing probability with high confidence. We find that the distribution of human replication initiation is consistent with inefficient, stochastic activation of heterogeneously distributed potential initiation complexes enriched in accessible chromatin. These observations are consistent with stochastic models of initiation-timing regulation and suggest that stochastic regulation of replication kinetics is a fundamental feature of eukaryotic replication, conserved from yeast to humans.


Assuntos
Replicação do DNA/genética , Células Eucarióticas/fisiologia , Genoma Humano/genética , Linhagem Celular Tumoral , Cromatina/genética , Período de Replicação do DNA/genética , Genoma Fúngico/genética , Estudo de Associação Genômica Ampla/métodos , Células HeLa , Humanos , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Sítio de Iniciação de Transcrição/fisiologia
2.
Proteins ; 88(8): 1050-1054, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31994784

RESUMO

We report docking performance on the six targets of Critical Assessment of PRedicted Interactions (CAPRI) rounds 39-45 that involved heteromeric protein-protein interactions and had the solved structures released since the rounds were held. Our general strategy involved protein-protein docking using ZDOCK, reranking using IRAD, and structural refinement using Rosetta. In addition, we made extensive use of experimental data to guide our docking runs. All the experimental information at the amino-acid level proved correct. However, for two targets, we also used protein-complex structures as templates for modeling interfaces. These resulted in incorrect predictions, presumably due to the low sequence identity between the targets and templates. Albeit a small number of targets, the performance described here compared somewhat less favorably with our previous CAPRI reports, which may be due to the CAPRI targets being increasingly challenging.


Assuntos
Simulação de Acoplamento Molecular , Peptídeos/química , Proteínas/química , Software , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligantes , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas/metabolismo , Projetos de Pesquisa , Homologia Estrutural de Proteína
3.
J Immunol ; 199(7): 2203-2213, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28923982

RESUMO

T cell specificity emerges from a myriad of processes, ranging from the biological pathways that control T cell signaling to the structural and physical mechanisms that influence how TCRs bind peptides and MHC proteins. Of these processes, the binding specificity of the TCR is a key component. However, TCR specificity is enigmatic: TCRs are at once specific but also cross-reactive. Although long appreciated, this duality continues to puzzle immunologists and has implications for the development of TCR-based therapeutics. In this review, we discuss TCR specificity, emphasizing results that have emerged from structural and physical studies of TCR binding. We show how the TCR specificity/cross-reactivity duality can be rationalized from structural and biophysical principles. There is excellent agreement between predictions from these principles and classic predictions about the scope of TCR cross-reactivity. We demonstrate how these same principles can also explain amino acid preferences in immunogenic epitopes and highlight opportunities for structural considerations in predictive immunology.


Assuntos
Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Membrana Celular/metabolismo , Reações Cruzadas , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Humanos , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
4.
Proteins ; 85(5): 908-916, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28160322

RESUMO

The ATLAS (Altered TCR Ligand Affinities and Structures) database (https://zlab.umassmed.edu/atlas/web/) is a manually curated repository containing the binding affinities for wild-type and mutant T cell receptors (TCRs) and their antigens, peptides presented by the major histocompatibility complex (pMHC). The database links experimentally measured binding affinities with the corresponding three dimensional (3D) structures for TCR-pMHC complexes. The user can browse and search affinities, structures, and experimental details for TCRs, peptides, and MHCs of interest. We expect this database to facilitate the development of next-generation protein design algorithms targeting TCR-pMHC interactions. ATLAS can be easily parsed using modeling software that builds protein structures for training and testing. As an example, we provide structural models for all mutant TCRs in ATLAS, built using the Rosetta program. Utilizing these structures, we report a correlation of 0.63 between experimentally measured changes in binding energies and our predicted changes. Proteins 2017; 85:908-916. © 2016 Wiley Periodicals, Inc.


Assuntos
Bases de Dados Factuais , Antígenos de Histocompatibilidade Classe I/química , Mutação , Peptídeos/química , Receptores de Antígenos de Linfócitos T/química , Software , Sítios de Ligação , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Internet , Ligantes , Modelos Moleculares , Peptídeos/imunologia , Ligação Proteica , Conformação Proteica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Termodinâmica
5.
Microarrays (Basel) ; 4(3): 339-69, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27600228

RESUMO

DNA copy number aberrations (CNAs) are of biological and medical interest because they help identify regulatory mechanisms underlying tumor initiation and evolution. Identification of tumor-driving CNAs (driver CNAs) however remains a challenging task, because they are frequently hidden by CNAs that are the product of random events that take place during tumor evolution. Experimental detection of CNAs is commonly accomplished through array comparative genomic hybridization (aCGH) assays followed by supervised and/or unsupervised statistical methods that combine the segmented profiles of all patients to identify driver CNAs. Here, we extend a previously-presented supervised algorithm for the identification of CNAs that is based on a topological representation of the data. Our method associates a two-dimensional (2D) point cloud with each aCGH profile and generates a sequence of simplicial complexes, mathematical objects that generalize the concept of a graph. This representation of the data permits segmenting the data at different resolutions and identifying CNAs by interrogating the topological properties of these simplicial complexes. We tested our approach on a published dataset with the goal of identifying specific breast cancer CNAs associated with specific molecular subtypes. Identification of CNAs associated with each subtype was performed by analyzing each subtype separately from the others and by taking the rest of the subtypes as the control. Our results found a new amplification in 11q at the location of the progesterone receptor in the Luminal A subtype. Aberrations in the Luminal B subtype were found only upon removal of the basal-like subtype from the control set. Under those conditions, all regions found in the original publication, except for 17q, were confirmed; all aberrations, except those in chromosome arms 8q and 12q were confirmed in the basal-like subtype. These two chromosome arms, however, were detected only upon removal of three patients with exceedingly large copy number values. More importantly, we detected 10 and 21 additional regions in the Luminal B and basal-like subtypes, respectively. Most of the additional regions were either validated on an independent dataset and/or using GISTIC. Furthermore, we found three new CNAs in the basal-like subtype: a combination of gains and losses in 1p, a gain in 2p and a loss in 14q. Based on these results, we suggest that topological approaches that incorporate multiresolution analyses and that interrogate topological properties of the data can help in the identification of copy number changes in cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA