Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
ACS Pharmacol Transl Sci ; 4(4): 1390-1407, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423273

RESUMO

Activation-induced cytidine deaminase (AID) initiates antibody diversification by mutating immunoglobulin loci in B lymphocytes. AID and related APOBEC3 (A3) enzymes also induce genome-wide mutations and lesions implicated in tumorigenesis and tumor progression. The most prevalent mutation signatures across diverse tumor genomes are attributable to the mistargeted mutagenic activities of AID/A3s. Thus, inhibiting AID/A3s has been suggested to be of therapeutic benefit. We previously used a computational-biochemical approach to gain insight into the structure of AID's catalytic pocket, which resulted in the discovery of a novel type of regulatory catalytic pocket closure that regulates AID/A3s that we termed the "Schrodinger's CATalytic pocket". Our findings were subsequently confirmed by direct structural studies. Here, we describe our search for small molecules that target the catalytic pocket of AID. We identified small molecules that inhibit purified AID, AID in cell extracts, and endogenous AID of lymphoma cells. Analogue expansion yielded derivatives with improved potencies. These were found to also inhibit A3A and A3B, the two most tumorigenic siblings of AID. Two compounds exhibit low micromolar IC50 inhibition of AID and A3A, exhibiting the strongest potency for A3A. Docking suggests key interactions between their warheads and residues lining the catalytic pockets of AID, A3A, and A3B and between the tails and DNA-interacting residues on the surface proximal to the catalytic pocket opening. Accordingly, mutants of these residues decreased inhibition potency. The chemistry and abundance of key stabilizing interactions between the small molecules and residues within and immediately outside the catalytic pockets are promising for therapeutic development.

3.
N Biotechnol ; 51: 67-79, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30822538

RESUMO

AID/APOBEC3 enzymes are cytidine deaminases that mutate antibody and retroviral genes and also mediate extensive tumor genome mutagenesis. The study of purified AID/APOBEC3 proteins is challenged by difficulties with their expression and purification arising from genotoxicity in expression hosts, extensive non-specific protein-protein/DNA/RNA interactions and haphazard oligomerization. To date, expression hosts for purification of AID/APOBEC3 enzymes include bacteria, insect and mammalian cells. Here the establishment and optimization of a yeast expression/secretion system for AID/APOBEC3s are reported, followed by comparison with the same enzymes expressed in bacterial and mammalian hosts. AID and APOBEC3G were expressed successfully in Pichia pastoris, each either with an N-terminal GST tag, C-terminal V5-His tag or as untagged native form. It was verified that the yeast-expressed enzymes exhibit identical biochemical properties to those reported using bacterial and mammalian expression, indicating high fidelity of protein folding. It was demonstrated that the system can be adapted for secretion of the enzymes into the media which was used directly in various enzyme assays. The system is also amenable to elimination of bulky fusion tags, providing native untagged enzymes. Thus, P. pastoris is an advantageous expression factory for AID/APOBEC3 enzymes, considering the cost, time, efficiency and quality of the obtained enzymes. The first report is also provided here of a functionally active, untagged, secreted AID, which may become a useful research reagent. A comprehensive comparison is made of the effect of fusion tags and expression hosts on the biochemical actions of AID and APOBEC3G.


Assuntos
Desaminases APOBEC/biossíntese , Desaminases APOBEC/genética , Citidina Desaminase/biossíntese , Citidina Desaminase/genética , Imunidade , Neoplasias/enzimologia , Pichia/genética , Desaminases APOBEC/isolamento & purificação , Citidina Desaminase/isolamento & purificação , Humanos , Mutagênicos , Neoplasias/metabolismo
4.
Int Rev Immunol ; 37(3): 151-164, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29211501

RESUMO

APOBEC3s (A3) are endogenous DNA-editing enzymes that are expressed in immune cells including T lymphocytes. A3s target and mutate the genomes of retroviruses that infect immune tissues such as the human immunodeficiency virus (HIV). Therefore, A3s were classically defined as host anti-viral innate immune factors. In contrast, we and others showed that A3s can also benefit the virus by mediating escape from adaptive immune recognition and drugs. Crucially, whether A3-mediated mutations help or hinder HIV, is not up to chance. Rather, the virus has evolved multiple mechanisms to actively and maximally subvert A3 activity. More recently, extensive A3 mutational footprints in tumor genomes have been observed in many different cancers. This suggests a role for A3s in cancer initiation and progression. On the other hand, multiple anti-tumor activities of A3s have also come to light, including impact on immune checkpoint molecules and possible generation of tumor neo-antigens. Here, we review the studies that reshaped the view of A3s from anti-viral innate immune agents to host factors exploited by HIV to escape from immune recognition. Viruses and tumors share many attributes, including rapid evolution and adeptness at exploiting mutations. Given this parallel, we then discuss the pro- and anti-tumor roles of A3s, and suggest that lessons learned from studying A3s in the context of anti-viral immunity can be applied to tumor immunotherapy.


Assuntos
Carcinogênese/genética , Infecções por HIV/genética , HIV/imunologia , Imunoterapia/métodos , Desaminases APOBEC , Imunidade Adaptativa , Animais , Antivirais , Evolução Biológica , Citidina Desaminase , Citosina Desaminase , Reparo do DNA , HIV/genética , Infecções por HIV/imunologia , Humanos , Evasão da Resposta Imune/genética , Imunidade Inata , Mutação/genética
5.
J Environ Radioact ; 113: 171-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22809716

RESUMO

A new isolate, Kocuria sp. ASB 107 from the Ab-e-Siah mineral radioactive spring (Ramsar, Mazandaran Province, Iran) was characterized on the basis of morphological and biochemical characteristics plus 16S rRNA gene sequencing. The isolate is most closely related to Kocuria rosea DSM 20447(T) (99.7% sequence similarity) and Kocuria polaris DSM 14382(T) (99.5%). This strain has some resistance to various genotoxic stresses, such as ionizing radiation, ultraviolet (256 nm- UV) and corona discharge. The 90% lethal doses (D(10)) for gamma-rays and 256 nm-UV are 2 kGy and 400 J m(-2), respectively, in definite cell concentration. Moreover, the resistance for a definite energy of corona discharge is 10 s, about 10 times greater than that of Escherichia coli. The growth temperature of the strain ASB 107 is 0-37 °C in TSB (tryptic soy broth). This study is the first report on the psychrotrophic radio-resistant bacteria belonging to the Kocuria genus isolated from Ab-e-Siah spring.


Assuntos
Micrococcaceae/efeitos da radiação , Radiação Ionizante , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA