RESUMO
Due to their intrinsic ability to eliminate malignant cells, natural killer (NK) cells emerge as a promising immunotherapy for cancer. While clinical studies have affirmed the safety of NK cell infusions and combination therapies have demonstrated encouraging outcomes in hematological malignancies, the efficacy of NK cell immunotherapeutic interventions remains heterogeneous across patient cohorts. Moreover, the implementation of NK cell immunotherapy in solid tumors presents notable challenges. Interfering with key NK cell inhibitory signaling pathways by targeting inhibitory killer cell immunoglobulin-like receptors (KIRs) and CD94/NK group 2 member A (NKG2A), holds promise for unleashing the full potential of NK cell-based immunotherapy. In this review, we provide an overview of the current approaches for interfering with inhibitory KIR and NKG2A signaling, exploring a selection of the multitude of combination strategies available. We discuss the significance of maintaining the delicate balance between achieving optimal suppression of NK cell inhibition and ensuring effective activation of anti-tumor effector function, while preserving the favorable safety profiles. The consideration of strategies to modulate inhibitory signaling pathways associated with KIR and NKG2A presents promising avenues for enhancing the efficacy of NK cell immunotherapy.
Assuntos
Células Matadoras Naturais , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Receptores KIR , Humanos , Células Matadoras Naturais/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptores KIR/imunologia , Receptores KIR/genética , Receptores KIR/metabolismo , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia/métodos , Transdução de Sinais , Inibidores de Checkpoint Imunológico/uso terapêuticoRESUMO
The HOVON 104 studied bortezomib-dexamethasone induction therapy and autologous stem cell transplantation in 50 patients, of whom 35 received an autologous stem cell transplantation (ASCT). We demonstrate a 5-year overall survival (OS) of 73% and progression-free survival (PFS) of 52% for all 50 patients with a median follow-up of 61.3 months. For the 35 transplanted patients, calculated from the date of ASCT, the 5-year OS and PFS were 91% and 68%, respectively. After ASCT, the rate of organ response improved over time but stabilized around 3 years. A complete cardiac response was seen in around 60% of patients and remained stable from 2 years onward. Reaching complete renal response was slower over time and achieved by 61% of the renal-affected patients at 5 years. We confirm the excellent outcomes after ASCT and demonstrate a 60% complete organ response with longer follow-up.
RESUMO
Natural killer (NK) cells eliminate infected or cancer cells via their cytotoxic capacity. NKG2A is an inhibitory receptor on NK cells and cancer cells often overexpress its ligand HLA-E to evade NK cell surveillance. Given the successes of immune checkpoint blockade in cancer therapy, NKG2A is an interesting novel target. However, anti-NKG2A antibodies have shown limited clinical response. In the pursuit of enhancing NK cell-mediated anti-tumor responses, we devised a Cas9-based strategy to delete KLRC1, encoding NKG2A, in human primary NK cells. Our approach involved electroporation of KLRC1-targeting Cas9 ribonucleoprotein resulting in effective ablation of NKG2A expression. Compared with anti-NKG2A antibody blockade, NKG2AKO NK cells exhibited enhanced activation, reduced suppressive signaling, and elevated expression of key transcription factors. NKG2AKO NK cells overcame inhibition from HLA-E, significantly boosting NK cell activity against solid and hematologic cancer cells. We validated this efficacy across multiple cell lines, a xenograft mouse model, and primary human leukemic cells. Combining NKG2A knockout with antibody coating of tumor cells further enhanced cytotoxicity through ADCC. Thus, we provide a comprehensive comparison of inhibition of the NKG2A pathway using genetic ablation and antibodies and provide novel insight in the observed differences in molecular mechanisms, which can be translated to enhance adoptive NK cell immunotherapy.
Assuntos
Células Matadoras Naturais , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Antígenos HLA-E , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/genética , Anticorpos Monoclonais/farmacologia , Sistemas CRISPR-Cas , Deleção de Genes , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Citotoxicidade ImunológicaRESUMO
Multiple myeloma (MM) is a hematological malignancy caused by the clonal expansion of malignant plasma cells in the bone marrow. Myeloma cells are susceptible to killing by natural killer (NK) cells, but NK cells fail to control disease progression, suggesting immunosuppression. The activation threshold of NK-effector function is regulated by interaction between KIRs and self-HLA class I, during a process called "education" to ensure self-tolerance. NK cells can respond to diseased cells based on the absence of HLA class I expression ("Missing-self" hypothesis). The HLA and KIR repertoire is extremely diverse; thus, the present study aimed to characterize potential variances in genotypic composition of HLA Class I NK-epitopes and KIRs between MM patients and healthy controls. Genotypic expression of KIR and HLA (HLA-C group-C1/C2 and Bw4 motifs (including HLA-A*23, A*24, A*32) were analyzed in 172 MM patients and 195 healthy controls. Compared to healthy controls, we did not observe specific KIR genes or genotypes, or HLA NK-epitopes with higher prevalence among MM patients. The presence of all three HLA NK-epitopes (C1+C2+Bw4+) was not associated with MM occurrence. However, MM patients were more likely to be C1-/C2+/Bw4+ (p = 0.049, OR 1.996). In line with this, there was a trend of increased genetic co-occurrence of Bw4 and KIR3DL1 in MM patients (p = 0.05, OR 1.557). Furthermore, MM patients were more likely to genetically express both C2/KIR2DL1 and Bw4/KIR3DL1 (p = 0.019, OR 2.453). Our results reveal an HLA NK-epitope combination that is associated with the occurrence of MM. No specific KIR genotypes were associated with MM.
Assuntos
Epitopos , Células Matadoras Naturais , Mieloma Múltiplo , Receptores KIR , Humanos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/genética , Receptores KIR/genética , Células Matadoras Naturais/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Epitopos/imunologia , Idoso , Genótipo , Adulto , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologiaRESUMO
Introduction: Pancreatic cancer is associated with poor prognosis, and limited treatment options are available for the majority of patients. Natural killer (NK) cells in combination with antibodies inducing antibody-dependent cell-mediated cytotoxicity (ADCC) could be a highly effective new therapeutic option in pancreatic cancer. Accurate predictive preclinical models are needed to develop successful NK cell immunotherapy. Tumor organoids, in vitro 3D organ-like structures that retain important pathophysiological characteristics of the in vivo tumor, may provide such a model. In the current study, we assessed the cytotoxic potential of adoptive NK cells against human pancreatic cancer organoids. We hypothesized that NK cell anti-tumor responses could be enhanced by including ADCC-triggering antibodies. Methods: We performed cytotoxicity assays with healthy donor-derived IL-2-activated NK cells and pancreatic cancer organoids from four patients. A 3D cytotoxicity assay using live-cell-imaging was developed and enabled real-time assessment of the response. Results: We show that NK cells migrate to and target pancreatic cancer organoids, resulting in an increased organoid death, compared to the no NK cell controls (reaching an average fold change from baseline of 2.1±0.8 vs 1.4±0.6). After 24-hours of co-culture, organoid 2D growth increased. Organoids from 2 out of 4 patients were sensitive to NK cells, while organoids from the other two patients were relatively resistant, indicating patient-specific heterogeneity among organoid cultures. The ADCC-inducing antibodies avelumab (anti-PD-L1) and trastuzumab (anti-HER2) increased NK cell-induced organoid cell death (reaching an average fold change from baseline of 3.5±1.0 and 4.5±1.8, respectively). Moreover, combination therapy with avelumab or trastuzumab resulted in complete disintegration of organoids. Finally, inclusion of ADCC-inducing antibodies was able to overcome resistance in NK-organoid combinations with low or no kill. Discussion: These results support the use of organoids as a relevant and personalized model to study the anti-tumor response of NK cells in vitro and the potential of ADCC-inducing antibodies to enhance NK cell effector function.
Assuntos
Anticorpos Monoclonais , Neoplasias Pancreáticas , Humanos , Anticorpos Monoclonais/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos , Trastuzumab/farmacologia , Trastuzumab/metabolismo , Células Matadoras Naturais , Neoplasias Pancreáticas/metabolismo , Neoplasias PancreáticasRESUMO
The CD38-targeting antibody daratumumab has marked activity in multiple myeloma (MM). Natural killer (NK) cells play an important role during daratumumab therapy by mediating antibody-dependent cellular cytotoxicity via their FcγRIII receptor (CD16), but they are also rapidly decreased following initiation of daratumumab treatment. We characterized the NK cell phenotype at baseline and during daratumumab monotherapy by flow cytometry and cytometry by time of flight to assess its impact on response and development of resistance (DARA-ATRA study; NCT02751255). At baseline, nonresponding patients had a significantly lower proportion of CD16+ and granzyme B+ NK cells, and higher frequency of TIM-3+ and HLA-DR+ NK cells, consistent with a more activated/exhausted phenotype. These NK cell characteristics were also predictive of inferior progression-free survival and overall survival. Upon initiation of daratumumab treatment, NK cells were rapidly depleted. Persisting NK cells exhibited an activated and exhausted phenotype with reduced expression of CD16 and granzyme B, and increased expression of TIM-3 and HLA-DR. We observed that addition of healthy donor-derived purified NK cells to BM samples from patients with either primary or acquired daratumumab-resistance improved daratumumab-mediated MM cell killing. In conclusion, NK cell dysfunction plays a role in primary and acquired daratumumab resistance. This study supports the clinical evaluation of daratumumab combined with adoptive transfer of NK cells.
RESUMO
Multiple myeloma (MM) is an incurable disease, characterized by malignant plasma cells in the bone marrow. MM growth is largely dependent on the tumor microenvironment (TME), consisting of complex cellular networks that shape a tumor-permissive environment. Within the TME, tumor-associated cells (TAC) comprise heterogeneous cell populations that collectively support immunosuppression. Reshaping the TME toward an immunostimulatory environment may enhance effectiveness of immunotherapies. Here, we investigated interactions between donor-derived natural killer (NK) cells and TAC, like tumor-associated macrophages (TAM) and M1 macrophages, and assessed whether anti-tumor effector functions of NK cells could be enhanced by an ADCC-triggering antibody targeting macrophages. Monocytes were polarized in vitro toward either M1 or TAM before co-culture with high-dose IL-2-activated NK cells. NK cell responses were assessed by measuring degranulation (CD107a) and IFN-γ production. We found that NK cells degranulated and produced IFN-γ upon interaction with both macrophage types. NK cell responses against PD-L1+ M1 macrophages could be further enhanced by Avelumab, an anti-PD-L1- and ADCC-inducing antibody. Additionally, NK cell responses were influenced by HLA class I, shown by stronger degranulation in NK cell subsets for which the corresponding HLA ligand was absent on the macrophage target cells (KIR-ligand mismatch) compared to degranulation in the presence of the HLA ligand (KIR-ligand match). Our results suggest that NK cells could, next to killing tumor cells, get activated upon interaction with TAC, like M1 macrophages and TAMs, and that NK cells combined with PD-L1 blocking antibodies with ADCC potential could, through IFN-γ secretion, promote a more immune-favorable TME.
Assuntos
Anticorpos Monoclonais , Mieloma Múltiplo , Humanos , Anticorpos Monoclonais/uso terapêutico , Interleucina-2/farmacologia , Interleucina-2/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Ligantes , Células Matadoras Naturais , Macrófagos/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Microambiente TumoralRESUMO
Adoptive natural killer (NK) cell-based immunotherapy poses a promising treatment approach in cancer. Despite minimal toxicities associated with NK cell infusion, the potential of NK cell therapy is inhibited by the immunosuppressive tumor microenvironment (TME). Multiple approaches to improve anti-cancer NK cell effector functions are being investigated. While much of this preclinical research is currently performed with commercially available tumor cell lines, this approach lacks the influence of the TME and heterogeneity of the primary tumor in patients. Here, we describe a comprehensive protocol for NK cell cytotoxicity- and degranulation assays against tumor cells derived from primary breast cancer tissue. Treatments to boost NK cell anti-tumor effector functions can be implemented in this model. Moreover, by using culture supernatants in follow up assays or by including additional cell types in the co-culture system, other NK cell effector mechanisms that further orchestrate innate and adaptive immunity could be studied.
Assuntos
Neoplasias da Mama , Neoplasias , Humanos , Feminino , Neoplasias da Mama/terapia , Células Matadoras Naturais/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Microambiente TumoralRESUMO
Natural killer (NK) cells mediate potent anti-tumor responses, which makes them attractive targets for immunotherapy. The anti-tumor response of endogenous- or allogeneic NK cells can be enhanced through clinically available monoclonal antibodies that mediate antibody-dependent cellular cytotoxicity (ADCC). NK cell activation is regulated by interaction of inhibitory receptors with classical- and non-classical human leukocyte antigens (HLA) class I molecules. Inhibitory receptors of the killer immunoglobulin-like receptor (KIR) family interact with HLA-A, -B or -C epitopes, while NKG2A interacts with the non-classical HLA-E molecule. Both types of inhibitory interactions may influence the strength of the ADCC response. In the present review, we provide an overview of the effect of inhibitory KIRs and NKG2A on NK cell-mediated ADCC, which highlights the rationale for combination strategies with ADCC triggering antibodies and interference with the NK cell relevant inhibitory immune checkpoints, such as KIR and NKG2A.
Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Antígenos de Histocompatibilidade Classe I , Citotoxicidade Celular Dependente de Anticorpos , Receptores KIR/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia , Antígenos HLARESUMO
Vitamin C is an important micronutrient for various immune cells. It increases phagocytic cell function and is necessary for T and natural killer (NK) cell development. Patients in need of an autologous hematopoietic stem cell transplantation (HSCT) are often vitamin C-depleted. We therefore hypothesized that vitamin C supplementation could improve immune recovery in autologous HSCT patients. This blinded, placebo-controlled trial included 44 patients randomized to receive vitamin C or a placebo. The following outcome measures used were clinical and immunological parameters, among others: time to neutrophil recovery, serum, and intracellular vitamin C values. Twenty-one patients received vitamin C, and 23 received a placebo. The time to neutrophil recovery did not differ between the two groups at 11.2 days (p = 0.96). There were no differences in hospitalization time (19.7 vs. 19.1 days, p = 0.80), the incidence of neutropenic fever (57% vs. 78%, p = 0.20), or 3-month overall survival (90.5% vs. 100%, p = 0.13). Bacteremia seemed to occur less in the vitamin C group (10% vs. 35%, p = 0.07). Our study shows no benefit from vitamin C supplementation on neutrophil recovery and hospitalization, despite possible lower rates of bacteremia in the vitamin C group. Therefore, we do not advise vitamin C supplementation in this treatment group.
Assuntos
Bacteriemia , Transplante de Células-Tronco Hematopoéticas , Linfoma , Mieloma Múltiplo , Humanos , Transplante Autólogo , Mieloma Múltiplo/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Ácido Ascórbico , Neutrófilos , Linfoma/terapia , VitaminasRESUMO
The efficacy of daratumumab depends partially on CD38 expression on multiple myeloma (MM) cells. We have previously shown that all-trans retinoic acid (ATRA) upregulates CD38 expression and reverts daratumumab-resistance ex vivo. We therefore evaluated the optimal dose, efficacy, and safety of daratumumab combined with ATRA in patients with daratumumab-refractory MM in a phase 1/2 study (NCT02751255). In part A of the study, 63 patients were treated with daratumumab monotherapy. Fifty patients with daratumumab-refractory MM were subsequently enrolled in part B and treated with daratumumab (reintensified schedule) combined with ATRA until disease progression. The recommended phase 2 dose of ATRA in combination with daratumumab was defined as 45 mg/m2. At this dose, the overall response rate (ORR) was 5%, indicating that the primary endpoint (ORR ≥15%) was not met. However, most patients (66%) achieved at least stable disease. After a median follow-up of 43 months, the median progression-free survival (PFS) for all patients was 2.8 months. Patients who previously achieved at least a partial response or minimal response/stable disease with prior daratumumab monotherapy had a significantly longer PFS compared with patients who immediately progressed during daratumumab as single agent (median PFS 3.4 and 2.8 vs 1.3 months). The median overall survival was 19.1 months. The addition of ATRA did not increase the incidence of adverse events. Flow cytometric analysis revealed that ATRA temporarily increased CD38 expression on immune cell subsets. In conclusion, the addition of ATRA and reintensification of daratumumab had limited activity in patients with daratumumab-refractory MM, which may be explained by the transient upregulation of CD38 expression. This trial was registered at www.clinicaltrials.gov as #NCT02751255.
Assuntos
Mieloma Múltiplo , Anticorpos Monoclonais/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Tretinoína/efeitos adversosRESUMO
Natural killer (NK)-cell-based immunotherapies are an attractive treatment option for cancer. We previously showed that alloreactive mouse NK cells cured mice of 4T1 breast cancer. However, the tumor microenvironment can inhibit immune responses, and these suppressive factors must be overcome to unfold the NK cells' full anti-tumor potential. Here, we investigated the combination of antibody-dependent cellular cytotoxicity (ADDC) and the selection of KIR-HLA-ligand mismatched NK cells to enhance NK cell anti-breast cancer responses in clinically relevant settings. Donor-derived and IL-2-activated NK cells were co-cultured with patient-derived breast cancer cells or cell lines MCF7 or SKBR3 together with the anti-HER2 antibody trastuzumab. NK cells mediated anti-breast cancer cytotoxicity under normoxic and hypoxic conditions. Under both conditions, trastuzumab vigorously enhanced NK cell degranulation (CD107a) against HER2-overexpressing SKBR3 cells, but we observed a discrepancy between highly degranulating NK cells and a rather modest increase in cytotoxicity of SKBR3. Against patient-derived breast cancer cells, the anti-tumor efficacy was rather limited, and HLA class I expression seemed to contribute to inhibited NK cell functionality. KIR-ligand-mismatched NK cells degranulated stronger compared to the matched NK cells, further highlighting the role of HLA. In summary, trastuzumab and KIR-ligand-mismatched NK cells could be two strategies to potently enhance NK cell responses to breast cancer.
RESUMO
Antibodies are commonly used in cancer immunotherapy because of their high specificity for tumor-associated antigens. The binding of antibodies can have direct effects on tumor cells but also engages natural killer (NK) cells via their Fc receptor. Mucin 1 (MUC1) is a highly glycosylated protein expressed in normal epithelial cells, while the under-glycosylated MUC1 epitope (MUC1-Tn/STn) is only expressed on malignant cells, making it an interesting diagnostic and therapeutic target. Several anti-MUC1 antibodies have been tested for therapeutic applications in solid tumors thus far without clinical success. Herein, we describe the generation of fully humanized antibodies based on the murine 5E5 antibody, targeting the tumor-specific MUC1-Tn/STn epitope. We confirmed that these antibodies specifically recognize tumor-associated MUC1 epitopes and can activate human NK cells in vitro. Defucosylation of these newly developed anti-MUC1 antibodies further enhanced antigen-dependent cellular cytotoxicity (ADCC) mediated by NK cells. We show that endocytosis inhibitors augment the availability of MUC1-Tn/STn epitopes on tumor cells but do not further enhance ADCC in NK cells. Collectively, this study describes novel fully humanized anti-MUC1 antibodies that, especially after defucosylation, are promising therapeutic candidates for cellular immunotherapy.
RESUMO
Infusion of ex vivo expanded and cytokine-activated natural killer (NK) cells is a promising alternative way to treat multiple myeloma (MM). However, the tumor microenvironment (TME) may suppress their function. While reduced glucose availability is a TME hallmark of many solid tumors, glucose levels within the TME of hematological malignancies residing in the bone marrow (BM) remain unknown. Here, we measured glucose levels in the BM of MM patients and tested the effect of different glucose levels on NK cells. BM glucose levels were measured using a biochemical analyzer. Compared to the normal range of blood glucose, BM glucose levels were lower in 6 of 9 patients (479-1231 mg/L; mean=731.8 mg/L). The effect of different glucose levels on NK cell cytotoxicity was tested in 4-hour cytotoxicity assays with tumor cells. 500 mg/L glucose (representing low range of MM BM) during the 4-hour cytotoxicity assay did not negatively affect cytotoxicity of activated NK cells, while higher glucose concentrations (4000 mg/L) diminished NK cell cytotoxicity. Since clinical application of NK cell therapy might require ex vivo expansion, expanded NK cells were exposed to a range of glucose concentrations from 500-4000 mg/L for a longer period (4 days). This did not reduce cytotoxicity or IFN-γ secretion nor affected their phenotypic profile. In summary, low glucose concentrations, as found in BM of MM patients, by itself did not compromise the anti-tumor potential of IL-2 activated NK cells in vitro. Although follow up studies in models with a more complex TME would be relevant, our data suggest that highly activated NK cells could be used to target tumors with a reduced glucose environment.
RESUMO
BACKGROUND: Patient-centeredness is essential in complex oncological multidisciplinary team decision-making. Improvement seems to be needed, while there is a lack of knowledge about health care providers' needs for improvement. OBJECTIVE: To explore multidisciplinary team members' perspectives on the need to improve patient-centeredness in complex decision-making, and subsequently the strategies to enhance it. METHODS: This was a qualitative descriptive interview study. The participants were twenty-four professionals who attended multidisciplinary cancer team meetings weekly. The setting was five multidisciplinary teams (gastrointestinal, gynecological, urological, head and neck, and hematological cancer) in a Dutch academic hospital. Data were collected by semi-structured interviews and were analyzed with a combination of inductive and deductive content analysis. RESULTS: The participants voiced the need for additional information (patient-centered information, patients's needs and preferences, individualized medical information) during the multidisciplinary team meeting, to be more patient-centered in the decision-making conversation with the patient following the meeting, and for more information following the meeting to support patient-centeredness. The strategies, which mostly originated from the needs, were categorized as organization, decision-making, and communication. The most prominent strategies were those aimed at collecting and using patient-centered information, and to facilitate the decision-making conversation with the patient following the multidisciplinary team meeting. CONCLUSION: Our findings highlighted the need to improve patient-centeredness in oncological multidisciplinary teams and provided a comprehensive overview of strategies for improvement, supported by multidisciplinary team members. These strategies emphasize involvement of patients throughout the continuous process of decision-making for patients with cancer. These strategies may be implemented in other oncological multidisciplinary teams, taking in mind the local needs. Future research may help to prioritize the strategies and to determine and evaluate the effect on endpoints, like patient or professional satisfaction, shared decision-making, and on the decision that was made.
RESUMO
Due to their efficient recognition and lysis of malignant cells, natural killer (NK) cells are considered as specialized immune cells that can be genetically modified to obtain capable effector cells for adoptive cellular treatment of cancer patients. However, biological and technical hurdles related to gene delivery into NK cells have dramatically restrained progress. Recent technological advancements, including improved cell expansion techniques, chimeric antigen receptors (CAR), CRISPR/Cas9 gene editing and enhanced viral transduction and electroporation, have endowed comprehensive generation and characterization of genetically modified NK cells. These promising developments assist scientists and physicians to design better applications of NK cells in clinical therapy. Notably, redirecting NK cells using CARs holds important promise for cancer immunotherapy. Various preclinical and a limited number of clinical studies using CAR-NK cells show promising results: efficient elimination of target cells without side effects, such as cytokine release syndrome and neurotoxicity which are seen in CAR-T therapies. In this review, we focus on the details of CAR-NK technology, including the design of efficient and safe CAR constructs and associated NK cell engineering techniques: the vehicles to deliver the CAR-containing transgene, detection methods for CARs, as well as NK cell sources and NK cell expansion. We summarize the current CAR-NK cell literature and include valuable lessons learned from the CAR-T cell field. This review also provides an outlook on how these approaches may transform current clinical products and protocols for cancer treatment.
Assuntos
Células Matadoras Naturais/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Engenharia Tecidual/métodos , HumanosRESUMO
Adoptive natural killer (NK) cell therapy is attaining promising clinical outcomes in recent years, but improvements are needed. Genetic modification of NK cells with a tumor antigen-specific receptor on their surface coupled to intracellular signaling domains may lead to enhanced cytotoxicity against malignant cells. One of the most common approaches is by lentivirus-mediated transduction. However, NK cells are difficult to transduce and various methods have been attempted with different success rates. Because the low-density lipoprotein-receptor (LDLR) is the receptor of vesicular stomatitis virus (VSV) and is expressed only at low levels on NK cells, we tested the potential of 5 statins and 5 non-statin compounds to increase the LDLR expression, thereby facilitating viral transduction. We found that the transduction efficiency of VSV-G pseudotyped lentivirus is augmented by statins that induced higher LDLR expression. In both NK-92 cells and primary NK cells, the transduction efficiency increased after treatment with statins. Furthermore, statins have been reported to suppress NK cell cytotoxicity; however, we showed that this can be completely reversed by adding geranylgeranyl-pyrophosphate (GGPP). Among the statins tested, we found that the combination of rosuvastatin with GGPP most potently improved viral transduction without affecting the cytotoxic properties of the NK cells.
RESUMO
BACKGROUND: Electronic patient portals are increasingly being implemented, also in (haemato) oncology. However, portal usage is low and depends on user and provider engagement. We explored wishes, expectations and thoughts of patients with a haematologic malignancy and their physicians with regard to the electronic patient portal. METHODS: Based on insights from literature and a focus group discussion we built a 44-item questionnaire. This questionnaire was spread amongst patients with a haematologic malignancy at the outpatient clinic that was not yet exposed to patient portal facilities. Haematologists completed a questionnaire based on literature. RESULTS: Patients were interested in many different types of access to information and portal functionalities. However, their opinions varied about the provision of access to the portal to other people, the role of the physician, possibilities for communication via the portal and timing of access. The physicians acknowledged the relevance of the electronic patient portal, but had some worries about the patients' autonomous information handling, organizational and technical issues. Patients frequently expressed to be open about the potential of the patient portal to orchestrate their care. Nevertheless, most physicians appreciated their supporting role towards the patient. CONCLUSIONS: Patients and physicians appreciated the electronic patient portal. Both groups need to be involved in further portal development to improve engagement by meeting patients' wishes, taking into account organizational and professional issues and managing expectations for both parties. To fit various patient profiles, portal design should be flexible and individualized. Further research should focus on the perceived added value and the impact on patient related outcome measures of portals.
Assuntos
Atitude do Pessoal de Saúde , Hematologia , Oncologia , Aceitação pelo Paciente de Cuidados de Saúde , Portais do Paciente , Médicos , Participação dos Interessados , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Many cancer patients on intensive chemotherapy lack vitamin C. Vitamin C stimulates the production and activation of immune cells, so perhaps supplementation could be used to improve the immunity in those patients. This review assesses the effectiveness and safety of vitamin C administration in cancer. The PubMed and EMBASE databases were searched and all study designs except for phase I studies, and case reports were included in this review. A total of 19 trials were included. In only 4 trials randomization was used to determine if patients received vitamin C or a placebo. The result of this review does not prove that there is a clinically relevant positive effect of vitamin C supplementation in cancer patients in general on the overall survival, clinical status, quality of life (QOL) and performance status (PS), since the quality of the studies published is low. Interventions and patient groups are very diverse, hence an effect in some patient groups is possible. There seems to be a better effect with intravenous than oral administration. Nevertheless, treatment with vitamin C is safe with minimal side effects. Thereby, we think it is safe to examine the effects of vitamin C on specific groups of patients in a randomized controlled setting.
Assuntos
Ácido Ascórbico/uso terapêutico , Neoplasias/tratamento farmacológico , Ácido Ascórbico/administração & dosagem , Suplementos Nutricionais , Vias de Administração de Medicamentos , HumanosRESUMO
Natural killer (NK) cells are attractive candidates for allogeneic cell-based immunotherapy due to their potent antitumor effector function and good safety profile. NK cells express killer immunoglobulin-like receptors (KIRs) and the NKG2A receptor important for NK cells education as well as providing inhibitory signals upon encountering HLA-expressing target cells. Multiple myeloma (MM) is an example of a tumor expressing relatively high levels of HLA molecules. In this review, we discuss the functional relevance of inhibitory KIRs and NKG2A for NK cells anti-MM response and strategies to lower these inhibitory signaling to enhance clinical efficacy of allogeneic NK cells in MM.