Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Mol Metab ; 81: 101899, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346589

RESUMO

OBJECTIVE: Pompe disease (PD) is caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA), leading to progressive glycogen accumulation and severe myopathy with progressive muscle weakness. In the Infantile-Onset PD (IOPD), death generally occurs <1 year of age. There is no cure for IOPD. Mouse models of PD do not completely reproduce human IOPD severity. Our main objective was to generate the first IOPD rat model to assess an innovative muscle-directed adeno-associated viral (AAV) vector-mediated gene therapy. METHODS: PD rats were generated by CRISPR/Cas9 technology. The novel highly myotropic bioengineered capsid AAVMYO3 and an optimized muscle-specific promoter in conjunction with a transcriptional cis-regulatory element were used to achieve robust Gaa expression in the entire muscular system. Several metabolic, molecular, histopathological, and functional parameters were measured. RESULTS: PD rats showed early-onset widespread glycogen accumulation, hepato- and cardiomegaly, decreased body and tissue weight, severe impaired muscle function and decreased survival, closely resembling human IOPD. Treatment with AAVMYO3-Gaa vectors resulted in widespread expression of Gaa in muscle throughout the body, normalizing glycogen storage pathology, restoring muscle mass and strength, counteracting cardiomegaly and normalizing survival rate. CONCLUSIONS: This gene therapy holds great potential to treat glycogen metabolism alterations in IOPD. Moreover, the AAV-mediated approach may be exploited for other inherited muscle diseases, which also are limited by the inefficient widespread delivery of therapeutic transgenes throughout the muscular system.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Camundongos , Ratos , Humanos , Animais , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Doença de Depósito de Glicogênio Tipo II/patologia , Músculo Esquelético/metabolismo , Glicogênio/metabolismo , Terapia Genética/métodos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/terapia
2.
Cell ; 186(23): 5068-5083.e23, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37804830

RESUMO

Metabolic reprogramming is a hallmark of cancer. However, mechanisms underlying metabolic reprogramming and how altered metabolism in turn enhances tumorigenicity are poorly understood. Here, we report that arginine levels are elevated in murine and patient hepatocellular carcinoma (HCC), despite reduced expression of arginine synthesis genes. Tumor cells accumulate high levels of arginine due to increased uptake and reduced arginine-to-polyamine conversion. Importantly, the high levels of arginine promote tumor formation via further metabolic reprogramming, including changes in glucose, amino acid, nucleotide, and fatty acid metabolism. Mechanistically, arginine binds RNA-binding motif protein 39 (RBM39) to control expression of metabolic genes. RBM39-mediated upregulation of asparagine synthesis leads to enhanced arginine uptake, creating a positive feedback loop to sustain high arginine levels and oncogenic metabolism. Thus, arginine is a second messenger-like molecule that reprograms metabolism to promote tumor growth.


Assuntos
Arginina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Arginina/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Metabolismo dos Lipídeos , Neoplasias Hepáticas/metabolismo
3.
Nat Commun ; 13(1): 6700, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335114

RESUMO

Lymphocystis disease virus-1 (LCDV-1) and several other Iridoviridae encode viral insulin/IGF-1 like peptides (VILPs) with high homology to human insulin and IGFs. Here we show that while single-chain (sc) and double-chain (dc) LCDV1-VILPs have very low affinity for the insulin receptor, scLCDV1-VILP has high affinity for IGF1R where it can antagonize human IGF-1 signaling, without altering insulin signaling. Consequently, scLCDV1-VILP inhibits IGF-1 induced cell proliferation and growth hormone/IGF-1 induced growth of mice in vivo. Cryo-electron microscopy reveals that scLCDV1-VILP engages IGF1R in a unique manner, inducing changes in IGF1R conformation that led to separation, rather than juxtaposition, of the transmembrane segments and hence inactivation of the receptor. Thus, scLCDV1-VILP is a natural peptide with specific antagonist properties on IGF1R signaling and may provide a new tool to guide development of hormonal analogues to treat cancers or metabolic disorders sensitive to IGF-1 without affecting glucose metabolism.


Assuntos
Fator de Crescimento Insulin-Like I , Receptor IGF Tipo 1 , Humanos , Camundongos , Animais , Receptor IGF Tipo 1/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Microscopia Crioeletrônica , Peptídeos/farmacologia
4.
Mol Ther Methods Clin Dev ; 25: 190-204, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35434177

RESUMO

Type 2 diabetes, insulin resistance, and obesity are strongly associated and are a major health problem worldwide. Obesity largely results from a sustained imbalance between energy intake and expenditure. Therapeutic approaches targeting metabolic rate may counteract body weight gain and insulin resistance. Bone morphogenic protein 7 (BMP7) has proven to enhance energy expenditure by inducing non-shivering thermogenesis in short-term studies in mice treated with the recombinant protein or adenoviral vectors encoding BMP7. To achieve long-term BMP7 effects, the use of adeno-associated viral (AAV) vectors would provide sustained production of the protein after a single administration. Here, we demonstrated that treatment of high-fat-diet-fed mice and ob/ob mice with liver-directed AAV-BMP7 vectors enabled a long-lasting increase in circulating levels of this factor. This rise in BMP7 concentration induced browning of white adipose tissue (WAT) and activation of brown adipose tissue, which enhanced energy expenditure, and reversed WAT hypertrophy, hepatic steatosis, and WAT and liver inflammation, ultimately resulting in normalization of body weight and insulin resistance. This study highlights the potential of AAV-BMP7-mediated gene therapy for the treatment of insulin resistance, type 2 diabetes, and obesity.

5.
Mol Ther Methods Clin Dev ; 23: 370-389, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34761052

RESUMO

Delivery of adeno-associated viral vectors (AAVs) to cerebrospinal fluid (CSF) has emerged as a promising approach to achieve widespread transduction of the central nervous system (CNS) and peripheral nervous system (PNS), with direct applicability to the treatment of a wide range of neurological diseases, particularly lysosomal storage diseases. Although studies in small animal models have provided proof of concept and experiments in large animals demonstrated feasibility in bigger brains, there is not much information on long-term safety or durability of the effect. Here, we report a 7-year study in healthy beagle dogs after intra-CSF delivery of a single, clinically relevant dose (2 × 1013 vg/dog) of AAV9 vectors carrying the canine sulfamidase, the enzyme deficient in mucopolysaccharidosis type IIIA. Periodic monitoring of CSF and blood, clinical and neurological evaluations, and magnetic resonance and ultrasound imaging of target organs demonstrated no toxicity related to treatment. AAV9-mediated gene transfer resulted in detection of sulfamidase activity in CSF throughout the study. Analysis at tissue level showed widespread sulfamidase expression and activity in the absence of histological findings in any region of encephalon, spinal cord, or dorsal root ganglia. Altogether, these results provide proof of durability of expression and long-term safety for intra-CSF delivery of AAV-based gene transfer vectors encoding therapeutic proteins to the CNS.

6.
Nat Commun ; 12(1): 5343, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504088

RESUMO

Mucopolysaccharidosis type IVA (MPSIVA) or Morquio A disease, a lysosomal storage disorder, is caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency, resulting in keratan sulfate (KS) and chondroitin-6-sulfate accumulation. Patients develop severe skeletal dysplasia, early cartilage deterioration and life-threatening heart and tracheal complications. There is no cure and enzyme replacement therapy cannot correct skeletal abnormalities. Here, using CRISPR/Cas9 technology, we generate the first MPSIVA rat model recapitulating all skeletal and non-skeletal alterations experienced by patients. Treatment of MPSIVA rats with adeno-associated viral vector serotype 9 encoding Galns (AAV9-Galns) results in widespread transduction of bones, cartilage and peripheral tissues. This led to long-term (1 year) increase of GALNS activity and whole-body correction of KS levels, thus preventing body size reduction and severe alterations of bones, teeth, joints, trachea and heart. This study demonstrates the potential of AAV9-Galns gene therapy to correct the disabling MPSIVA pathology, providing strong rationale for future clinical translation to MPSIVA patients.


Assuntos
Condroitina Sulfatases/genética , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Mucopolissacaridose IV/terapia , Sistema Musculoesquelético/metabolismo , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/ultraestrutura , Condroitina Sulfatases/deficiência , Condroitina Sulfatases/metabolismo , Regulação Enzimológica da Expressão Gênica , Vetores Genéticos/genética , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Mucopolissacaridose IV/enzimologia , Mucopolissacaridose IV/genética , Sistema Musculoesquelético/patologia , Sistema Musculoesquelético/ultraestrutura , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Resultado do Tratamento
7.
PLoS One ; 16(2): e0247300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606810

RESUMO

OBJECTIVE: Gremlin 1 (GREM1) is a secreted BMP2/4 inhibitor which regulates commitment and differentiation of human adipose precursor cells and prevents the browning effect of BMP4. GREM1 is an insulin antagonist and serum levels are high in type 2 diabetes (T2D). We here examined in vivo effects of AAV8 (Adeno-Associated Viral vectors of serotype eight) GREM 1 targeting the liver in mature mice to increase its systemic secretion and also, in a separate study, injected recombinant GREM 1 intraperitoneally. The objective was to characterize systemic effects of GREM 1 on insulin sensitivity, glucose tolerance, body weight, adipose cell browning and other local tissue effects. METHODS: Adult mice were injected with AAV8 vectors expressing GREM1 in the liver or receiving regular intra-peritoneal injections of recombinant GREM1 protein. The mice were fed with a low fat or high fat diet (HFD) and followed over time. RESULTS: Liver-targeted AAV8-GREM1 did not alter body weight, whole-body glucose and insulin tolerance, or adipose tissue gene expression. Although GREM1 protein accumulated in liver cells, GREM1 serum levels were not increased suggesting that it may not have been normally processed for secretion. Hepatic lipid accumulation, inflammation and fibrosis were also not changed. Repeated intraperitoneal rec-GREM1 injections for 5 weeks were also without effects on body weight and insulin sensitivity. UCP1 was slightly but significantly reduced in both white and brown adipose tissue but this was not of sufficient magnitude to alter body weight. We validated that recombinant GREM1 inhibited BMP4-induced pSMAD1/5/9 in murine cells in vitro, but saw no direct inhibitory effect on insulin signalling and pAkt (ser 473 and thr 308) activation. CONCLUSION: GREM1 accumulates intracellularly when overexpressed in the liver cells of mature mice and is apparently not normally processed/secreted. However, also repeated intraperitoneal injections were without effects on body weight and insulin sensitivity and adipose tissue UCP1 levels were only marginally reduced. These results suggest that mature mice do not readily respond to GREMLIN 1 but treatment of murine cells with GREMLIN 1 protein in vitro validated its inhibitory effect on BMP4 signalling while insulin signalling was not altered.


Assuntos
Dependovirus/genética , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/metabolismo , Células 3T3-L1 , Animais , Peso Corporal , Linhagem Celular , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos/administração & dosagem , Teste de Tolerância a Glucose , Humanos , Injeções Intraperitoneais , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Masculino , Camundongos , Proteínas Recombinantes/administração & dosagem
8.
Int J Obes (Lond) ; 45(2): 449-460, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33110143

RESUMO

BACKGROUND/OBJECTIVES: During obesity, hypertrophic enlargement of white adipose tissue (WAT) promotes ectopic lipid deposition and development of insulin resistance. In contrast, WAT hyperplasia is associated with preservation of insulin sensitivity. The complex network of factors that regulates white adipogenesis is not fully understood. Bone morphogenic protein 7 (BMP7) can induce brown adipogenesis, but its role on white adipogenesis remains to be elucidated. Here, we assessed BMP7-mediated effects on white adipogenesis in ob/ob mice. METHODS: BMP7 was overexpressed in either WAT or liver of ob/ob mice using adeno-associated viral (AAV) vectors. Analysis of gene expression, histological and morphometric alterations, and metabolites and hormones concentrations were carried out. RESULTS: Overexpression of BMP7 in adipocytes of subcutaneous and visceral WAT increased fat mass, the proportion of small-size adipocytes and the expression of adipogenic and mature adipocyte genes, suggesting induction of adipogenesis irrespective of fat depot. These changes were associated with reduced hepatic steatosis and improved insulin sensitivity. In contrast, liver-specific overproduction of BMP7 did not promote WAT hyperplasia despite BMP7 circulating levels were similar to those achieved after genetic engineering of WAT. CONCLUSIONS: This study unravels a new autocrine/paracrine role of BMP7 on white adipogenesis and highlights that BMP7 may modulate WAT plasticity and increase insulin sensitivity.


Assuntos
Adipogenia/genética , Proteína Morfogenética Óssea 7 , Resistência à Insulina/genética , Tecido Adiposo Branco/metabolismo , Animais , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Masculino , Camundongos , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo
9.
J Cell Biol ; 219(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32777016

RESUMO

Short/dysfunctional telomeres are at the origin of idiopathic pulmonary fibrosis (IPF) in patients mutant for telomere maintenance genes. However, it remains unknown whether physiological aging leads to short telomeres in the lung, thus leading to IPF with aging. Here, we find that physiological aging in wild-type mice leads to telomere shortening and a reduced proliferative potential of alveolar type II cells and club cells, increased cellular senescence and DNA damage, increased fibroblast activation and collagen deposits, and impaired lung biophysics, suggestive of a fibrosis-like pathology. Treatment of both wild-type and telomerase-deficient mice with telomerase gene therapy prevented the onset of lung profibrotic pathologies. These findings suggest that short telomeres associated with physiological aging are at the origin of IPF and that a potential treatment for IPF based on telomerase activation would be of interest not only for patients with telomerase mutations but also for sporadic cases of IPF associated with physiological aging.


Assuntos
Envelhecimento/genética , Dano ao DNA/genética , Fibrose Pulmonar Idiopática/genética , Telomerase/genética , Animais , Bleomicina/toxicidade , Senescência Celular/genética , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Telômero/genética , Encurtamento do Telômero/genética
10.
Mol Metab ; 32: 15-26, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32029225

RESUMO

OBJECTIVE: Bone morphogenetic protein 4 (BMP4) adeno-associated viral vectors of serotype 8 (AAV8) gene therapy targeting the liver prevents the development of obesity in initially lean mice by browning the large subcutaneous white adipose tissue (WAT) and enhancing energy expenditure. Here, we examine whether this approach could also reduce established obesity. METHODS: Dietary-induced obese C57BL6/N mice received AAV8 BMP4 gene therapy at 17-18 weeks of age. They were kept on a high-fat diet and phenotypically characterized for an additional 10-12 weeks. Following termination, the mice underwent additional characterization in vitro. RESULTS: Surprisingly, we observed no effect on body weight, browning of WAT, or energy expenditure in these obese mice, but whole-body insulin sensitivity and glucose tolerance were robustly improved. Insulin signaling and insulin-stimulated glucose uptake were increased in both adipose cells and skeletal muscle. BMP4 also decreased hepatic glucose production and reduced gluconeogenic enzymes in the liver, but not in the kidney, in addition to enhancing insulin action in the liver. CONCLUSIONS: Our findings show that BMP4 prevents, but does not reverse, established obesity in adult mice, while it improves insulin sensitivity independent of weight reduction. The BMP antagonist Noggin was increased in WAT in obesity, which may account for the lack of browning.


Assuntos
Tecido Adiposo Marrom , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/uso terapêutico , Terapia Genética , Insulina/metabolismo , Obesidade/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/induzido quimicamente , Transdução de Sinais
11.
JBMR Plus ; 4(1): e10247, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31956851

RESUMO

Multiple myeloma is characterized by accumulation of malignant plasma cells in the bone marrow. Most patients suffer from an osteolytic bone disease, caused by increased bone degradation and reduced bone formation. Bone morphogenetic protein 4 (BMP4) is important for both pre- and postnatal bone formation and induces growth arrest and apoptosis of myeloma cells. BMP4-treatment of myeloma patients could have the potential to reduce tumor growth and restore bone formation. We therefore explored BMP4 gene therapy in a human-mouse model of multiple myeloma where humanized bone scaffolds were implanted subcutaneously in RAG2-/- γC-/-mice. Mice were treated with adeno-associated virus serotype 8 BMP4 vectors (AAV8-BMP4) to express BMP4 in the liver. When mature BMP4 was detectable in the circulation, myeloma cells were injected into the scaffolds and tumor growth was examined by weekly imaging. Strikingly, the tumor burden was reduced in AAV8-BMP4 mice compared with the AAV8-CTRL mice, suggesting that increased circulating BMP4 reduced tumor growth. BMP4-treatment also prevented bone loss in the scaffolds, most likely due to reduced tumor load. To delineate the effects of BMP4 overexpression on bone per se, without direct influence from cancer cells, we examined the unaffected, non-myeloma femurs by µCT. Surprisingly, the AAV8-BMP4 mice had significantly reduced trabecular bone volume, trabecular numbers, as well as significantly increased trabecular separation compared with the AAV8-CTRL mice. There was no difference in cortical bone parameters between the two groups. Taken together, BMP4 gene therapy inhibited myeloma tumor growth, but also reduced the amount of trabecular bone in mice. Our data suggest that care should be taken when considering using BMP4 as a therapeutic agent. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

12.
Hum Gene Ther ; 30(10): 1211-1221, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31482754

RESUMO

For most lysosomal storage diseases (LSDs), there is no cure. Gene therapy is an attractive tool for treatment of LSDs caused by deficiencies in secretable lysosomal enzymes, in which neither full restoration of normal enzymatic activity nor transduction of all cells of the affected organ is necessary. However, some LSDs, such as mucopolysaccharidosis type III (MPSIII) diseases or Sanfilippo syndrome, represent a difficult challenge because patients suffer severe neurodegeneration with mild somatic alterations. The disease's main target is the central nervous system (CNS) and enzymes do not efficiently cross the blood-brain barrier (BBB) even if present at very high concentration in circulation. No specific treatment has been approved for MPSIII. In this study, we discuss the adeno-associated virus (AAV) vector-mediated gene transfer strategies currently being developed for MPSIII disease. These strategies rely on local delivery of AAV vectors to the CNS either through direct intraparenchymal injection at several sites or through delivery to the cerebrospinal fluid (CSF), which bathes the whole CNS, or exploit the properties of certain AAV serotypes capable of crossing the BBB upon systemic administration. Although studies in small and large animal models of MPSIII diseases have provided evidence supporting the efficacy and safety of all these strategies, there are considerable differences between the different routes of administration in terms of procedure-associated risks, vector dose requirements, sensitivity to the effect of circulating neutralizing antibodies that block AAV transduction, and potential toxicity. Ongoing clinical studies should shed light on which gene transfer strategy leads to highest clinical benefits while minimizing risks. The development of all these strategies opens a new horizon for treatment of not only MPSIII and other LSDs but also of a wide range of neurological diseases.


Assuntos
Encéfalo/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Mucopolissacaridose III/terapia , Animais , Anticorpos Neutralizantes/biossíntese , Barreira Hematoencefálica/metabolismo , Encéfalo/patologia , Ensaios Clínicos como Assunto , Dependovirus/metabolismo , Modelos Animais de Doenças , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Injeções Intralesionais , Injeções Intravenosas , Lentivirus/genética , Lentivirus/metabolismo , Mucopolissacaridose III/líquido cefalorraquidiano , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia
13.
Aging (Albany NY) ; 11(10): 2916-2948, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31140977

RESUMO

Neurodegenerative diseases associated with old age such as Alzheimer's disease present major problems for society, and they currently have no cure. The telomere protective caps at the ends of chromosomes shorten with age, and when they become critically short, they can induce a persistent DNA damage response at chromosome ends, triggering secondary cellular responses such as cell death and cellular senescence. Mice and humans with very short telomeres owing to telomerase deficiencies have an earlier onset of pathologies associated with loss of the regenerative capacity of tissues. However, the effects of short telomeres in very low proliferative tissues such as the brain have not been thoroughly investigated. Here, we describe a mouse model of neurodegeneration owing to presence of short telomeres in the brain as the consequence of telomerase deficiency. Interestingly, we find similar signs of neurodegeneration in very old mice as the consequence of physiological mouse aging. Next, we demonstrate that delivery of telomerase gene therapy to the brain of these mice results in amelioration of some of these neurodegeneration phenotypes. These findings suggest that short telomeres contribute to neurodegeneration diseases with aging and that telomerase activation may have a therapeutic value in these diseases.


Assuntos
Terapia Genética/métodos , Doenças Neurodegenerativas/terapia , Telomerase/genética , Encurtamento do Telômero , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Encéfalo/enzimologia , Dependovirus , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Masculino , Memória , Camundongos Knockout , Doenças Neurodegenerativas/etiologia , Telomerase/deficiência
14.
PLoS Genet ; 14(8): e1007562, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30114189

RESUMO

Short and dysfunctional telomeres are sufficient to induce a persistent DNA damage response at chromosome ends, which leads to the induction of senescence and/or apoptosis and to various age-related conditions, including a group of diseases known as "telomere syndromes", which are provoked by extremely short telomeres owing to germline mutations in telomere genes. This opens the possibility of using telomerase activation as a potential therapeutic strategy to rescue short telomeres both in telomere syndromes and in age-related diseases, in this manner maintaining tissue homeostasis and ameliorating these diseases. In the past, we generated adeno-associated viral vectors carrying the telomerase gene (AAV9-Tert) and shown their therapeutic efficacy in mouse models of cardiac infarct, aplastic anemia, and pulmonary fibrosis. Although we did not observe increased cancer incidence as a consequence of Tert overexpression in any of those models, here we set to test the safety of AAV9-mediated Tert overexpression in the context of a cancer prone mouse model, owing to expression of oncogenic K-ras. As control, we also treated mice with AAV9 vectors carrying a catalytically inactive form of Tert, known to inhibit endogenous telomerase activity. We found that overexpression of Tert does not accelerate the onset or progression of lung carcinomas, even when in the setting of a p53-null background. These findings indicate that telomerase activation by using AAV9-mediated Tert gene therapy has no detectable cancer-prone effects in the context of oncogene-induced mouse tumors.


Assuntos
Carcinogênese , Genes ras/genética , Neoplasias Pulmonares/genética , Telomerase/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Dano ao DNA , Dependovirus , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Terapia Genética , Vetores Genéticos , Mutação em Linhagem Germinativa , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Transgênicos , Encurtamento do Telômero
15.
EMBO Mol Med ; 10(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29987000

RESUMO

Prevalence of type 2 diabetes (T2D) and obesity is increasing worldwide. Currently available therapies are not suited for all patients in the heterogeneous obese/T2D population, hence the need for novel treatments. Fibroblast growth factor 21 (FGF21) is considered a promising therapeutic agent for T2D/obesity. Native FGF21 has, however, poor pharmacokinetic properties, making gene therapy an attractive strategy to achieve sustained circulating levels of this protein. Here, adeno-associated viral vectors (AAV) were used to genetically engineer liver, adipose tissue, or skeletal muscle to secrete FGF21. Treatment of animals under long-term high-fat diet feeding or of ob/ob mice resulted in marked reductions in body weight, adipose tissue hypertrophy and inflammation, hepatic steatosis, inflammation and fibrosis, and insulin resistance for > 1 year. This therapeutic effect was achieved in the absence of side effects despite continuously elevated serum FGF21. Furthermore, FGF21 overproduction in healthy animals fed a standard diet prevented the increase in weight and insulin resistance associated with aging. Our study underscores the potential of FGF21 gene therapy to treat obesity, insulin resistance, and T2D.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Fatores de Crescimento de Fibroblastos/genética , Terapia Genética , Resistência à Insulina , Obesidade/terapia , Adipócitos/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica , Metabolismo Energético , Fígado Gorduroso/terapia , Fatores de Crescimento de Fibroblastos/metabolismo , Fibrose/terapia , Técnicas de Transferência de Genes , Hiperplasia/terapia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Músculo Esquelético/metabolismo , Obesidade/genética , Pancreatite/terapia
16.
J Clin Invest ; 128(3): 960-969, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29376887

RESUMO

Profound hyperphagia is a major disabling feature of Prader-Willi syndrome (PWS). Characterization of the mechanisms that underlie PWS-associated hyperphagia has been slowed by the paucity of animal models with increased food intake or obesity. Mice with a microdeletion encompassing the Snord116 cluster of noncoding RNAs encoded within the Prader-Willi minimal deletion critical region have previously been reported to show growth retardation and hyperphagia. Here, consistent with previous reports, we observed growth retardation in Snord116+/-P mice with a congenital paternal Snord116 deletion. However, these mice neither displayed increased food intake nor had reduced hypothalamic expression of the proprotein convertase 1 gene PCSK1 or its upstream regulator NHLH2, which have recently been suggested to be key mediators of PWS pathogenesis. Specifically, we disrupted Snord116 expression in the mediobasal hypothalamus in Snord116fl mice via bilateral stereotaxic injections of a Cre-expressing adeno-associated virus (AAV). While the Cre-injected mice had no change in measured energy expenditure, they became hyperphagic between 9 and 10 weeks after injection, with a subset of animals developing marked obesity. In conclusion, we show that selective disruption of Snord116 expression in the mediobasal hypothalamus models the hyperphagia of PWS.


Assuntos
Hiperfagia/metabolismo , Hipotálamo/metabolismo , Síndrome de Prader-Willi/genética , RNA Nucleolar Pequeno/genética , Animais , Composição Corporal , Dependovirus , Modelos Animais de Doenças , Deleção de Genes , Genótipo , Hiperfagia/genética , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/metabolismo , Síndrome de Prader-Willi/metabolismo
17.
Aging Cell ; 16(6): 1353-1368, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28944611

RESUMO

The shelterin complex protects telomeres by preventing them from being degraded and recognized as double-strand DNA breaks. TRF1 is an essential component of shelterin, with important roles in telomere protection and telomere replication. We previously showed that TRF1 deficiency in the context of different mouse tissues leads to loss of tissue homeostasis owing to impaired stem cell function. Here, we show that TRF1 levels decrease during organismal aging both in mice and in humans. We further show that increasing TRF1 expression in both adult (1-year-old) and old (2-year-old) mice using gene therapy can delay age-associated pathologies. To this end, we used the nonintegrative adeno-associated serotype 9 vector (AAV9), which transduces the majority of mouse tissues allowing for moderate and transient TRF1 overexpression. AAV9-TRF1 gene therapy significantly prevented age-related decline in neuromuscular function, glucose tolerance, cognitive function, maintenance of subcutaneous fat, and chronic anemia. Interestingly, although AAV9-TRF1 treatment did not significantly affect median telomere length, we found a lower abundance of short telomeres and of telomere-associated DNA damage in some tissues. Together, these findings suggest that rescuing naturally decreased TRF1 levels during mouse aging using AAV9-TRF1 gene therapy results in an improved mouse health span.


Assuntos
Envelhecimento/genética , Terapia Genética/métodos , Proteína 1 de Ligação a Repetições Teloméricas/genética , Envelhecimento/metabolismo , Animais , Clonagem Molecular , Dano ao DNA , Dependovirus/genética , Vetores Genéticos/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Telômero/genética , Proteína 1 de Ligação a Repetições Teloméricas/administração & dosagem , Proteína 1 de Ligação a Repetições Teloméricas/biossíntese , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Transfecção
18.
Cell Rep ; 20(5): 1038-1049, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768190

RESUMO

We examined the effect of Bone Morphogenetic Protein 4 (BMP4) on energy expenditure in adult mature mice by targeting the liver with adeno-associated viral (AAV) BMP4 vectors to increase circulating levels. We verified the direct effect of BMP4 in inducing a brown oxidative phenotype in differentiating preadipocytes in vitro. AAV-BMP4-treated mice display marked browning of subcutaneous adipocytes, with increased mitochondria and Uncoupling Protein 1 (UCP1). These mice are protected from obesity on a high-fat diet and have increased whole-body energy expenditure, improved insulin sensitivity, reduced liver fat, and reduced adipose tissue inflammation. On a control diet, they show unchanged body weight but improved insulin sensitivity. In contrast, AAV-BMP4-treated mice showed beiging of BAT with reduced UCP1, increased lipids, and reduced hormone-sensitive lipase (HSL). Thus, BMP4 exerts different effects on WAT and BAT, but the overall effect is to enhance insulin sensitivity and whole-body energy expenditure by browning subcutaneous adipose tissue.


Assuntos
Adipócitos Marrons/metabolismo , Proteína Morfogenética Óssea 4/biossíntese , Dependovirus , Terapia Genética/métodos , Obesidade/prevenção & controle , Gordura Subcutânea/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Metabolismo Energético , Masculino , Camundongos , Obesidade/genética , Obesidade/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
19.
Mol Metab ; 6(7): 664-680, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28702323

RESUMO

OBJECTIVE: Type 1 diabetes is characterized by autoimmune destruction of ß-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding ß-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for ß-cells with immunomodulatory properties. METHODS: Transgenic NOD mice overexpressing IGF1 specifically in ß-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. RESULTS: In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of ß-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved ß-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. CONCLUSIONS: Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a therapeutic strategy for autoimmune diabetes in humans.


Assuntos
Diabetes Mellitus Tipo 1/genética , Fator de Crescimento Insulin-Like I/genética , Células Secretoras de Insulina/metabolismo , Animais , Células Cultivadas , Dependovirus/genética , Diabetes Mellitus Tipo 1/terapia , Feminino , Terapia Genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NOD
20.
Mol Ther Methods Clin Dev ; 6: 1-7, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28626777

RESUMO

Diabetes is a complex metabolic disease that exposes patients to the deleterious effects of hyperglycemia on various organs. Achievement of normoglycemia with exogenous insulin treatment requires the use of high doses of hormone, which increases the risk of life-threatening hypoglycemic episodes. We developed a gene therapy approach to control diabetic hyperglycemia based on co-expression of the insulin and glucokinase genes in skeletal muscle. Previous studies proved the feasibility of gene delivery to large diabetic animals with adeno-associated viral (AAV) vectors. Here, we report the long-term (∼8 years) follow-up after a single administration of therapeutic vectors to diabetic dogs. Successful, multi-year control of glycemia was achieved without the need of supplementation with exogenous insulin. Metabolic correction was demonstrated through normalization of serum levels of fructosamine, triglycerides, and cholesterol and remarkable improvement in the response to an oral glucose challenge. The persistence of vector genomes and therapeutic transgene expression years after vector delivery was documented in multiple samples from treated muscles, which showed normal morphology. Thus, this study demonstrates the long-term efficacy and safety of insulin and glucokinase gene transfer in large animals and especially the ability of the system to respond to the changes in metabolic needs as animals grow older.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA