Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sci Data ; 11(1): 448, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702329

RESUMO

Time-critical transcriptional events in the immune microenvironment are important for response to immune checkpoint blockade (ICB), yet these events are difficult to characterise and remain incompletely understood. Here, we present whole tumor RNA sequencing data in the context of treatment with ICB in murine models of AB1 mesothelioma and Renca renal cell cancer. We sequenced 144 bulk RNAseq samples from these two cancer types across 4 time points prior and after treatment with ICB. We also performed single-cell sequencing on 12 samples of AB1 and Renca tumors an hour before ICB administration. Our samples were equally distributed between responders and non-responders to treatment. Additionally, we sequenced AB1-HA mesothelioma tumors treated with two sample dissociation protocols to assess the impact of these protocols on the quality transcriptional information in our samples. These datasets provide time-course information to transcriptionally characterize the ICB response and provide detailed information at the single-cell level of the early tumor microenvironment prior to ICB therapy.


Assuntos
Carcinoma de Células Renais , Inibidores de Checkpoint Imunológico , Neoplasias Renais , Mesotelioma , Microambiente Tumoral , Animais , Camundongos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , RNA-Seq , Análise de Sequência de RNA , Análise de Célula Única
3.
J Allergy Clin Immunol ; 153(6): 1692-1703, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38253260

RESUMO

BACKGROUND: Airflow limitation is a hallmark of chronic obstructive pulmonary disease, which can develop through different lung function trajectories across the life span. There is a need for longitudinal studies aimed at identifying circulating biomarkers of airflow limitation across different stages of life. OBJECTIVES: This study sought to identify a signature of serum proteins associated with airflow limitation and evaluate their relation to lung function longitudinally in adults and children. METHODS: This study used data from 3 adult cohorts (TESAOD [Tucson Epidemiological Study of Airway Obstructive Disease], SAPALDIA [Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults], LSC [Lovelace Smoker Cohort]) and 1 birth cohort (TCRS [Tucson Children's Respiratory Study]) (N = 1940). In TESAOD, among 46 circulating proteins, we identified those associated with FEV1/forced vital capacity (FVC) percent (%) predicted levels and generated a score based on the sum of their z-scores. Cross-sectional analyses were used to test the score for association with concomitant lung function. Longitudinal analyses were used to test the score for association with subsequent lung function growth in childhood and decline in adult life. RESULTS: After false discovery rate adjustment, serum levels of 5 proteins (HP, carcinoembryonic antigen, ICAM1, CRP, TIMP1) were associated with percent predicted levels of FEV1/FVC and FEV1 in TESAOD. In cross-sectional multivariate analyses the 5-biomarker score was associated with FEV1 % predicted in all adult cohorts (meta-analyzed FEV1 decrease for 1-SD score increase: -2.9%; 95% CI: -3.9%, -1.9%; P = 2.4 × 10-16). In multivariate longitudinal analyses, the biomarker score at 6 years of age was inversely associated with FEV1 and FEV1/FVC levels attained by young adult life (P = .02 and .005, respectively). In adults, persistently high levels of the biomarker score were associated with subsequent accelerated decline of FEV1 and FEV1/FVC (P = .01 and .001). CONCLUSIONS: A signature of 5 circulating biomarkers of airflow limitation was associated with both impaired lung function growth in childhood and accelerated lung function decline in adult life, indicating that these proteins may be involved in multiple lung function trajectories leading to chronic obstructive pulmonary disease.


Assuntos
Biomarcadores , Doença Pulmonar Obstrutiva Crônica , Humanos , Feminino , Biomarcadores/sangue , Masculino , Adulto , Pessoa de Meia-Idade , Criança , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Idoso , Volume Expiratório Forçado , Estudos Longitudinais , Adolescente , Testes de Função Respiratória , Estudos de Coortes , Adulto Jovem , Capacidade Vital , Estudos Transversais , Pré-Escolar
4.
PLoS One ; 18(5): e0274364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37146029

RESUMO

Mesothelioma is characterised by its aggressive invasive behaviour, affecting the surrounding tissues of the pleura or peritoneum. We compared an invasive pleural model with a non-invasive subcutaneous model of mesothelioma and performed transcriptomic analyses on the tumour samples. Invasive pleural tumours were characterised by a transcriptomic signature enriched for genes associated with MEF2C and MYOCD signaling, muscle differentiation and myogenesis. Further analysis using the CMap and LINCS databases identified geldanamycin as a potential antagonist of this signature, so we evaluated its potential in vitro and in vivo. Nanomolar concentrations of geldanamycin significantly reduced cell growth, invasion, and migration in vitro. However, administration of geldanamycin in vivo did not result in significant anti-cancer activity. Our findings show that myogenesis and muscle differentiation pathways are upregulated in pleural mesothelioma which may be related to the invasive behaviour. However, geldanamycin as a single agent does not appear to be a viable treatment for mesothelioma.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Humanos , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Neoplasias Pleurais/patologia , Proliferação de Células , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
5.
Nat Commun ; 13(1): 4895, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986006

RESUMO

The biological determinants of the response to immune checkpoint blockade (ICB) in cancer remain incompletely understood. Little is known about dynamic biological events that underpin therapeutic efficacy due to the inability to frequently sample tumours in patients. Here, we map the transcriptional profiles of 144 responding and non-responding tumours within two mouse models at four time points during ICB. We find that responding tumours display on/fast-off kinetics of type-I-interferon (IFN) signaling. Phenocopying of this kinetics using time-dependent sequential dosing of recombinant IFNs and neutralizing antibodies markedly improves ICB efficacy, but only when IFNß is targeted, not IFNα. We identify Ly6C+/CD11b+ inflammatory monocytes as the primary source of IFNß and find that active type-I-IFN signaling in tumour-infiltrating inflammatory monocytes is associated with T cell expansion in patients treated with ICB. Together, our results suggest that on/fast-off modulation of IFNß signaling is critical to the therapeutic response to ICB, which can be exploited to drive clinical outcomes towards response.


Assuntos
Interferon Tipo I , Neoplasias , Animais , Interferon-alfa , Interferon beta/genética , Interferon beta/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transdução de Sinais
6.
J Allergy Clin Immunol ; 150(4): 817-829.e6, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35643377

RESUMO

BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) are common chronic respiratory diseases, and some patients have overlapping disease features, termed asthma-COPD overlap (ACO). Patients characterized with ACO have increased disease severity; however, the mechanisms driving this have not been widely studied. OBJECTIVES: This study sought to characterize the phenotypic and transcriptomic features of experimental ACO in mice induced by chronic house dust mite antigen and cigarette smoke exposure. METHODS: Female BALB/c mice were chronically exposed to house dust mite antigen for 11 weeks to induce experimental asthma, cigarette smoke for 8 weeks to induce experimental COPD, or both concurrently to induce experimental ACO. Lung inflammation, structural changes, and lung function were assessed. RNA-sequencing was performed on separated airway and parenchyma lung tissues to assess transcriptional changes. Validation of a novel upstream driver SPI1 in experimental ACO was assessed using the pharmacological SPI1 inhibitor, DB2313. RESULTS: Experimental ACO recapitulated features of both asthma and COPD, with mixed pulmonary eosinophilic/neutrophilic inflammation, small airway collagen deposition, and increased airway hyperresponsiveness. Transcriptomic analysis identified common and distinct dysregulated gene clusters in airway and parenchyma samples in experimental asthma, COPD, and ACO. Upstream driver analysis revealed increased expression of the transcription factor Spi1. Pharmacological inhibition of SPI1 using DB2313, reduced airway remodeling and airway hyperresponsiveness in experimental ACO. CONCLUSIONS: A new experimental model of ACO featuring chronic dual exposures to house dust mite and cigarette smoke mimics key disease features observed in patients with ACO and revealed novel disease mechanisms, including upregulation of SPI1, that are amenable to therapy.


Assuntos
Asma , Eosinofilia , Doença Pulmonar Obstrutiva Crônica , Hipersensibilidade Respiratória , Animais , Feminino , Camundongos , RNA , Fatores de Transcrição , Transcriptoma
7.
Front Oncol ; 12: 849793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402250

RESUMO

With immune checkpoint therapy (ICT) having reshaped the treatment of many cancers, the next frontier is to identify and develop novel combination therapies to improve efficacy. Previously, we and others identified beneficial immunological effects of the vitamin A derivative tretinoin on anti-tumour immunity. Although it is known that tretinoin preferentially depletes myeloid derived suppressor cells in blood, little is known about the effects of tretinoin on the tumour microenvironment, hampering the rational design of clinical trials using tretinoin in combination with ICT. Here, we aimed to identify how tretinoin changed the tumour microenvironment in mouse tumour models, using flow cytometry and RNAseq, and we sought to use that information to establish optimal dosing and scheduling of tretinoin in combination with several ICT antibodies in multiple cancer models. We found that tretinoin rapidly induced an interferon dominated inflammatory tumour microenvironment, characterised by increased CD8+ T cell infiltration. This phenotype completely overlapped with the phenotype that was induced by ICT itself, and we confirmed that the combination further amplified this inflammatory milieu. The addition of tretinoin significantly improved the efficacy of anti-CTLA4/anti-PD-L1 combination therapy, and staggered scheduling was more efficacious than concomitant scheduling, in a dose-dependent manner. The positive effects of tretinoin could be extended to ICT antibodies targeting OX40, GITR and CTLA4 monotherapy in multiple cancer models. These data show that tretinoin induces an interferon driven, CD8+ T cell tumour microenvironment that is responsive to ICT.

8.
J Allergy Clin Immunol ; 150(1): 93-103, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35177255

RESUMO

BACKGROUND: Results from recent clinical studies suggest potential efficacy of immune training (IT)-based approaches for protection against severe lower respiratory tract infections in infants, but underlying mechanisms are unclear. OBJECTIVE: We used systems-level analyses to elucidate IT mechanisms in infants in a clinical trial setting. METHODS: Pre- and posttreatment peripheral blood mononuclear cells from a placebo-controlled trial in which winter treatment with the IT agent OM85 reduced infant respiratory infection frequency and/or duration were stimulated for 24 hours with the virus/bacteria mimics polyinosinic:polycytidylic acid/lipopolysaccharide. Transcriptomic profiling via RNA sequencing, pathway and upstream regulator analyses, and systems-level gene coexpression network analyses were used sequentially to elucidate and compare responses in treatment and placebo groups. RESULTS: In contrast to subtle changes in antivirus-associated polyinosinic:polycytidylic acid response profiles, the bacterial lipopolysaccharide-triggered gene coexpression network responses exhibited OM85 treatment-associated upregulation of IFN signaling. This was accompanied by network rewiring resulting in increased coordination of TLR4 expression with IFN pathway-associated genes (especially master regulator IRF7); segregation of TNF and IFN-γ (which potentially synergize to exaggerate inflammatory sequelae) into separate expression modules; and reduced size/complexity of the main proinflammatory network module (containing, eg, IL-1,IL-6, and CCL3). Finally, we observed a reduced capacity for lipopolysaccharide-induced inflammatory cytokine (eg, IL-6 and TNF) production in the OM85 group. CONCLUSION: These changes are consistent with treatment-induced enhancement of bacterial pathogen detection/clearance capabilities concomitant with enhanced capacity to regulate ensuing inflammatory response intensity and duration. We posit that IT agents exemplified by OM85 potentially protect against severe lower respiratory tract infections in infants principally by effects on innate immune responses targeting the bacterial components of the mixed respiratory viral/bacterial infections that are characteristic of this age group.


Assuntos
Infecções Respiratórias , Vírus , Humanos , Lactente , Interleucina-6/metabolismo , Leucócitos Mononucleares , Lipopolissacarídeos , Poli I-C
9.
iScience ; 25(1): 103571, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34984327

RESUMO

Mesothelioma is a cancer that typically originates in the pleura of the lungs. It rapidly invades the surrounding tissues, causing pain and shortness of breath. We compared cell lines injected either subcutaneously or intrapleurally and found that only the latter resulted in invasive and rapid growth. Pleural tumors displayed a transcriptional signature consistent with increased activity of nuclear receptors PPARα and PPARγ and with an increased abundance of endogenous PPAR-activating ligands. We found that chemical probe GW6471 is a potent, dual PPARα/γ antagonist with anti-invasive and anti-proliferative activity in vitro. However, administration of GW6471 at doses that provided sustained plasma exposure levels sufficient for inhibition of PPARα/γ transcriptional activity did not result in significant anti-mesothelioma activity in mice. Lastly, we demonstrate that the in vitro anti-tumor effect of GW6471 is off-target. We conclude that dual PPARα/γ antagonism alone is not a viable treatment modality for mesothelioma.

10.
Cancers (Basel) ; 13(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34885021

RESUMO

Immunotherapy has revolutionised the treatment of cancers by exploiting the immune system to eliminate tumour cells. Despite the impressive response in a proportion of patients, clinical benefit has been limited thus far. A significant focus to date has been the identification of specific markers associated with response to immunotherapy. Unfortunately, the heterogeneity between patients and cancer types means identifying markers of response to therapy is inherently complex. There is a growing appreciation for the role of the tumour microenvironment (TME) in directing response to immunotherapy. The TME is highly heterogeneous and contains immune, stromal, vascular and tumour cells that all communicate and interact with one another to form solid tumours. This review analyses major cell populations present within the TME with a focus on their diverse and often contradictory roles in cancer and how this informs our understanding of immunotherapy. Furthermore, we discuss the role of integrated omics in providing a comprehensive view of the TME and demonstrate the potential of leveraging multi-omics to decipher the underlying mechanisms of anti-tumour immunity for the development of novel immunotherapeutic strategies.

11.
Front Immunol ; 12: 735133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552594

RESUMO

Cancer vaccination drives the generation of anti-tumor T cell immunity and can be enhanced by the inclusion of effective immune adjuvants such as type I interferons (IFNs). Whilst type I IFNs have been shown to promote cross-priming of T cells, the role of individual subtypes remains unclear. Here we systematically compared the capacity of distinct type I IFN subtypes to enhance T cell responses to a whole-cell vaccination strategy in a pre-clinical murine model. We show that vaccination in combination with IFNß induces significantly greater expansion of tumor-specific CD8+ T cells than the other type I IFN subtypes tested. Optimal expansion was dependent on the presence of XCR1+ dendritic cells, CD4+ T cells, and CD40/CD40L signaling. Therapeutically, vaccination with IFNß delayed tumor progression when compared to vaccination without IFN. When vaccinated in combination with anti-PD-L1 checkpoint blockade therapy (CPB), the inclusion of IFNß associated with more mice experiencing complete regression and a trend in increased overall survival. This work demonstrates the potent adjuvant activity of IFNß, highlighting its potential to enhance cancer vaccination strategies alone and in combination with CPB.


Assuntos
Adjuvantes Imunológicos/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Vacinas Anticâncer/farmacologia , Interferon beta/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Melanoma Experimental/terapia , Neoplasias Cutâneas/terapia , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Interferon beta/genética , Interferon beta/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Vacinação
12.
Cells ; 10(1)2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401460

RESUMO

Immunotherapy has revolutionised the treatment of cancers by harnessing the power of the immune system to eradicate malignant tissue. However, it is well recognised that some cancers are highly resistant to these therapies, which is in part attributed to the immunosuppressive landscape of the tumour microenvironment (TME). The contexture of the TME is highly heterogeneous and contains a complex architecture of immune, stromal, vascular and tumour cells in addition to acellular components such as the extracellular matrix. While understanding the dynamics of the TME has been instrumental in predicting durable responses to immunotherapy and developing new treatment strategies, recent evidence challenges the fundamental paradigms of how tumours can effectively subvert immunosurveillance. Here, we discuss the various immunosuppressive features of the TME and how fine-tuning these mechanisms, rather than ablating them completely, may result in a more comprehensive and balanced anti-tumour response.


Assuntos
Terapia de Imunossupressão , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Ensaios Clínicos como Assunto , Citocinas/metabolismo , Humanos , Metaboloma
13.
Front Immunol ; 11: 974, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499788

RESUMO

Respiratory viral infections, particularly those caused by rhinovirus, exacerbate chronic respiratory inflammatory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Airway epithelial cells are the primary site of rhinovirus replication and responsible of initiating the host immune response to infection. Numerous studies have reported that the anti-viral innate immune response (including type I and type III interferon) in asthma is less effective or deficient leading to the conclusion that epithelial innate immunity is a key determinant of disease severity during a rhinovirus induced exacerbation. However, deficient rhinovirus-induced epithelial interferon production in asthma has not always been observed. We hypothesized that disparate in vitro airway epithelial infection models using high multiplicity of infection (MOI) and lacking genome-wide, time course analyses have obscured the role of epithelial innate anti-viral immunity in asthma and COPD. To address this, we developed a low MOI rhinovirus model of differentiated primary epithelial cells obtained from healthy, asthma and COPD donors. Using genome-wide gene expression following infection, we demonstrated that gene expression patterns are similar across patient groups, but that the kinetics of induction are delayed in cells obtained from asthma and COPD donors. Rhinovirus-induced innate immune responses were defined by interferons (type-I, II, and III), interferon response factors (IRF1, IRF3, and IRF7), TLR signaling and NF-κB and STAT1 activation. Induced gene expression was evident at 24 h and peaked at 48 h post-infection in cells from healthy subjects. In contrast, in cells from donors with asthma or COPD induction was maximal at or beyond 72-96 h post-infection. Thus, we propose that propensity for viral exacerbations of asthma and COPD relate to delayed (rather than deficient) expression of epithelial cell innate anti-viral immune genes which in turns leads to a delayed and ultimately more inflammatory host immune response.


Assuntos
Asma/virologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Imunidade Inata , Doença Pulmonar Obstrutiva Crônica/virologia , Mucosa Respiratória/imunologia , Idoso , Asma/imunologia , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/imunologia , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia , Rhinovirus
14.
Nat Protoc ; 15(5): 1628-1648, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32238953

RESUMO

The therapeutic response to immune checkpoint blockade (ICB) is highly variable, not only between different cancers but also between patients with the same cancer type. The biological mechanisms underlying these differences in response are incompletely understood. Identifying correlates in patient tumor samples is challenging because of genetic and environmental variability. Murine studies usually compare different tumor models or treatments, introducing potential confounding variables. This protocol describes bilateral murine tumor models, derived from syngeneic cancer cell lines, that display a symmetrical yet dichotomous response to ICB. These models enable detailed analysis of whole tumors in a highly homogeneous background, combined with knowledge of the therapeutic outcome within a few weeks, and could potentially be used for mechanistic studies using other (immuno-)therapies. We discuss key considerations and describe how to use two cell lines as fully optimized models. We discuss experimental details, including proper inoculation technique to achieve symmetry and one-sided surgical tumor removal, which takes only 5 min per mouse. Furthermore, we outline the preparation of bulk tissue or single-cell suspensions for downstream analyses such as bulk RNA-seq, immunohistochemistry, single-cell RNA-seq and flow cytometry.


Assuntos
Antineoplásicos Imunológicos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Experimentais , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C
15.
J Allergy Clin Immunol ; 145(6): 1562-1573, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32113981

RESUMO

BACKGROUND: Emerging evidence suggests that disease vulnerability is expressed throughout the airways, the so-called unified airway hypothesis, but the evidence to support this is predominantly indirect. OBJECTIVES: We sought to establish the transcriptomic profiles of the upper and lower airways and determine their level of similarity irrespective of airway symptoms (wheeze) and allergy. METHODS: We performed RNA sequencing on upper and lower airway epithelial cells from 63 children with or without wheeze and accompanying atopy, using differential gene expression and gene coexpression analyses to determine transcriptional similarity. RESULTS: We observed approximately 91% homology in the expressed genes between the 2 sites. When coexpressed genes were grouped into modules relating to biological functions, all were found to be conserved between the 2 regions, resulting in a consensus network containing 16 modules associated with ribosomal function, metabolism, gene expression, mitochondrial activity, and antiviral responses through IFN activity. Although symptom-associated gene expression changes were more prominent in the lower airway, they were reflected in nasal epithelium and included IL-1 receptor like 1, prostaglandin-endoperoxide synthase 1, CCL26, and periostin. Through network analysis we identified a cluster of coexpressed genes associated with atopic wheeze in the lower airway, which could equally distinguish atopic and nonatopic phenotypes in upper airway samples. CONCLUSIONS: We show that the upper and lower airways are significantly conserved in their transcriptional composition, and that variations associated with disease are present in both nasal and tracheal epithelium. Findings from this study supporting a unified airway imply that clinical insight regarding the lower airway in health and disease can be gained from studying the nasal epithelium.


Assuntos
Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Sistema Respiratório/metabolismo , Transcriptoma/genética , Adolescente , Moléculas de Adesão Celular/genética , Quimiocina CCL26/genética , Criança , Pré-Escolar , Ciclo-Oxigenase 1/genética , Feminino , Humanos , Hipersensibilidade/genética , Masculino , Receptores Tipo I de Interleucina-1/genética , Sons Respiratórios/genética
16.
Sci Transl Med ; 11(501)2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316010

RESUMO

Cancer immunotherapy using antibodies that target immune checkpoints has delivered outstanding results. However, responses only occur in a subset of patients, and it is not fully understood what biological processes determine an effective outcome. This lack of understanding hinders the development of rational combination treatments. We set out to define the pretreatment microenvironment associated with an effective outcome by using the fact that inbred mouse strains bearing monoclonal cancer cell line-derived tumors respond in a dichotomous manner to immune checkpoint blockade (ICB). We compared the cellular composition and gene expression profiles of responsive and nonresponsive tumors from mice before ICB and validated the findings in cohorts of patients with cancer treated with ICB antibodies. We found that responsive tumors were characterized by an inflammatory gene expression signature consistent with up-regulation of signal transducer and activator of transcription 1 (STAT1) and Toll-like receptor 3 (TLR3) signaling and down-regulation of interleukin-10 (IL-10) signaling. In addition, responsive tumors had more infiltrating-activated natural killer (NK) cells, which were necessary for response. Pretreatment of mice with large established tumors using the STAT1-activating cytokine interferon-γ (IFNγ), the TLR3 ligand poly(I:C), and an anti-IL-10 antibody sensitized tumors to ICB by attracting IFNγ-producing NK cells into the tumor, resulting in increased cure rates. Our results identify a pretreatment tumor microenvironment that predicts response to ICB, which can be therapeutically attained. These data suggest a biomarker-driven approach to patient management to establish whether a patient would benefit from treatment with sensitizing therapeutics before ICB.


Assuntos
Imunoterapia , Células Matadoras Naturais/imunologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Células Clonais , Terapia Combinada , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Fenótipo
17.
Am J Respir Crit Care Med ; 199(12): 1537-1549, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30562046

RESUMO

Rationale: A subset of infants are hypersusceptible to severe/acute viral bronchiolitis (AVB), for reasons incompletely understood. Objectives: To characterize the cellular/molecular mechanisms underlying infant AVB in circulating cells/local airway tissues. Methods: Peripheral blood mononuclear cells and nasal scrapings were obtained from infants (<18 mo) and children (≥18 mo to 5 yr) during AVB and after convalescence. Immune response patterns were profiled by multiplex analysis of plasma cytokines, flow cytometry, and transcriptomics (RNA-Seq). Molecular profiling of group-level data used a combination of upstream regulator and coexpression network analysis, followed by individual subject-level data analysis using personalized N-of-1-pathways methodology. Measurements and Main Results: Group-level analyses demonstrated that infant peripheral blood mononuclear cell responses were dominated by monocyte-associated hyperupregulated type 1 IFN signaling/proinflammatory pathways (drivers: TNF [tumor necrosis factor], IL-6, TREM1 [triggering receptor expressed on myeloid cells 1], and IL-1B), versus a combination of inflammation (PTGER2 [prostaglandin E receptor 2] and IL-6) plus growth/repair/remodeling pathways (ERBB2 [erbb-b2 receptor tyrosine kinase 2], TGFB1 [transforming growth factor-ß1], AREG [amphiregulin], and HGF [hepatocyte growth factor]) coupled with T-helper cell type 2 and natural killer cell signaling in children. Age-related differences were not attributable to differential steroid usage or variations in underlying viral pathogens. Nasal mucosal responses were comparable qualitatively in infants/children, dominated by IFN types 1-3, but the magnitude of upregulation was higher in infants (range, 6- to 48-fold) than children (5- to 17-fold). N-of-1-pathways analysis confirmed differential upregulation of innate immunity in infants and natural killer cell networks in children, and additionally demonstrated covert AVB response subphenotypes that were independent of chronologic age. Conclusions: Dysregulated expression of IFN-dependent pathways after respiratory viral infections is a defining immunophenotypic feature of AVB-susceptible infants and a subset of children. Susceptible subjects seem to represent a discrete subgroup who cluster based on (slow) kinetics of postnatal maturation of innate immune competence.


Assuntos
Bronquiolite Viral/genética , Bronquiolite Viral/imunologia , Imunidade Inata , Leucócitos Mononucleares/imunologia , Mucosa Nasal/imunologia , Fenótipo , Transcriptoma , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Análise de Sequência de RNA
18.
Respirology ; 23(12): 1117-1126, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30218470

RESUMO

Respiratory diseases such as asthma, chronic obstructive pulmonary disease and lung cancer represent a critical area for medical research as millions of people are affected globally. The development of new strategies for treatment and/or prevention, and the identification of biomarkers for patient stratification and early detection of disease inception are essential to reducing the impact of lung diseases. The successful translation of research into clinical practice requires a detailed understanding of the underlying biology. In this regard, the advent of next-generation sequencing and mass spectrometry has led to the generation of an unprecedented amount of data spanning multiple layers of biological regulation (genome, epigenome, transcriptome, proteome, metabolome and microbiome). Dealing with this wealth of data requires sophisticated bioinformatics and statistical tools. Here, we review the basic concepts in bioinformatics and genomic data analysis and illustrate the application of these tools to further our understanding of lung diseases. We also highlight the potential for data integration of multi-omic profiles and computational drug repurposing to define disease subphenotypes and match them to targeted therapies, paving the way for personalized medicine.


Assuntos
Biomarcadores , Biologia Computacional/métodos , Genômica/métodos , Doenças Respiratórias , Diagnóstico Precoce , Humanos , Medicina de Precisão , Doenças Respiratórias/genética , Doenças Respiratórias/prevenção & controle , Doenças Respiratórias/terapia , Medição de Risco/métodos , Pesquisa Translacional Biomédica/métodos
19.
Sci Rep ; 8(1): 1511, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367592

RESUMO

Atopic asthma is a persistent disease characterized by intermittent wheeze and progressive loss of lung function. The disease is thought to be driven primarily by chronic aeroallergen-induced type 2-associated inflammation. However, the vast majority of atopics do not develop asthma despite ongoing aeroallergen exposure, suggesting additional mechanisms operate in conjunction with type 2 immunity to drive asthma pathogenesis. We employed RNA-Seq profiling of sputum-derived cells to identify gene networks operative at baseline in house dust mite-sensitized (HDMS) subjects with/without wheezing history that are characteristic of the ongoing asthmatic state. The expression of type 2 effectors (IL-5, IL-13) was equivalent in both cohorts of subjects. However, in HDMS-wheezers they were associated with upregulation of two coexpression modules comprising multiple type 2- and epithelial-associated genes. The first module was interlinked by the hubs EGFR, ERBB2, CDH1 and IL-13. The second module was associated with CDHR3 and mucociliary clearance genes. Our findings provide new insight into the molecular mechanisms operative at baseline in the airway mucosa in atopic asthmatics undergoing natural aeroallergen exposure, and suggest that susceptibility to asthma amongst these subjects involves complex interactions between type 2- and epithelial-associated gene networks, which are not operative in equivalently sensitized/exposed atopic non-asthmatics.


Assuntos
Alérgenos/metabolismo , Asma/patologia , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Escarro/citologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Análise de Sequência de RNA
20.
J Cyst Fibros ; 16(4): 475-482, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28428011

RESUMO

BACKGROUND: The role of the macrophages in cystic fibrosis (CF) lung disease has been poorly studied. We hypothesized that alternatively activated M2 macrophages are abnormal in CF lung disease. METHODS: Blood samples were collected from adults (n=13) children (n=27) with CF on admission for acute pulmonary exacerbation and when clinically stable. Monocytes were differentiated into macrophages and polarized into classical (M1) and alternatively-activated (M2) phenotypes, function determined ex-vivo and compared with healthy controls. RESULTS: In the absence of functional cystic fibrosis trans-membrane conductance regulator (CFTR), either naturally in patients with CF or induced with CFTR inhibitors, monocyte-derived macrophages do not respond to IL-13/IL-4, fail to polarize into M2s associated with a post-transcriptional failure to produce and express IL-13Rα1 on the macrophage surface Polarization to the M1 phenotype was unaffected. CONCLUSIONS: CFTR-dependent imbalance of macrophage phenotypes and functions could contribute to the exaggerated inflammatory response seen in CF lung disease.


Assuntos
Fibrose Cística , Subunidade alfa1 de Receptor de Interleucina-13/imunologia , Pulmão , Ativação de Macrófagos/imunologia , Adulto , Criança , Fibrose Cística/imunologia , Fibrose Cística/patologia , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Humanos , Inflamação/imunologia , Interleucina-13/imunologia , Interleucina-4/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/fisiopatologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA