Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(16): e2303379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380561

RESUMO

Patient-Derived Organoids (PDO) and Xenografts (PDX) are the current gold standards for patient-derived models of cancer (PDMC). Nevertheless, how patient tumor cells evolve in these models and the impact on drug response remains unclear. Herein, the transcriptomic and chromatin accessibility landscapes of matched colorectal cancer (CRC) PDO, PDX, PDO-derived PDX (PDOX), and original patient tumors (PT) are compared. Two major remodeling axes are discovered. The first axis delineates PDMC from PT, and the second axis distinguishes PDX and PDO. PDOX are more similar to PDX than PDO, indicating the growth environment is a driving force for chromatin adaptation. Transcription factors (TF) that differentially bind to open chromatins between matched PDO and PDOX are identified. Among them, KLF14 and EGR2 footprints are enriched in PDOX relative to matched PDO, and silencing of KLF14 or EGR2 promoted tumor growth. Furthermore, EPHA4, a shared downstream target gene of KLF14 and EGR2, altered tumor sensitivity to MEK inhibitor treatment. Altogether, patient-derived CRC cells undergo both common and distinct chromatin remodeling in PDO and PDX/PDOX, driven largely by their respective microenvironments, which results in differences in growth and drug sensitivity and needs to be taken into consideration when interpreting their ability to predict clinical outcome.


Assuntos
Montagem e Desmontagem da Cromatina , Neoplasias Colorretais , Organoides , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Montagem e Desmontagem da Cromatina/genética , Camundongos , Animais , Organoides/metabolismo , Modelos Animais de Doenças
2.
Cell Stem Cell ; 31(1): 1-2, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181746

RESUMO

Using an isogenic organoid platform to model pancreatic cancer, Duan et al. establish an important link between mutant KRAS and cholesterol metabolism and identify perhexiline maleate as a possible therapeutic to target this relationship.


Assuntos
Reprogramação Metabólica , Neoplasias Pancreáticas , Humanos , Metabolismo dos Lipídeos , Organoides , Proteínas Proto-Oncogênicas p21(ras)/genética
3.
J Ovarian Res ; 15(1): 114, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266675

RESUMO

BACKGROUND: Epithelial ovarian cancer (OC) is the most lethal gynecological malignancy and patients present with significant metastatic burden, particularly to the adipose-rich microenvironment of the omentum. Recent evidence has highlighted the importance of metabolic adaptations in enabling this metastasis, leading to significant interest in evolving the arsenal of tools used to study OC metabolism. In this study, we demonstrate the capability of genetically encoded fluorescent biosensors to study OC, with a focus on 3D organoid models that better recapitulate in vivo tumor microenvironments. MATERIALS AND METHODS: Plasmids encoding the metabolic biosensors HyPer, iNap, Peredox, and Perceval were transfected into 15 ovarian cancer cell lines to assay oxidative stress, NADPH/NADP+, NADH/NAD+, and ATP/ADP, respectively. Fluorescence readings were used to assay dynamic metabolic responses to omental conditioned media (OCM) and 100 µM carboplatin treatment. SKOV3 cells expressing HyPer were imaged as 2D monolayers, 3D organoids, and as in vivo metastases via an intravital omental window. We further established organoids from ascites collected from Stage III/IV OC patients with carboplatin-resistant or carboplatin-sensitive tumors (n = 8 total). These patient-derived organoids (PDOs) were engineered to express HyPer, and metabolic readings of oxidative stress were performed during treatment with 100 µM carboplatin. RESULTS: Exposure to OCM or carboplatin induced heterogenous metabolic changes in 15 OC cell lines, as measured using metabolic sensors. Oxidative stress of in vivo omental metastases, measured via intravital imaging of metastasizing SKOV3-HyPer cells, was more closely recapitulated by SKOV3-HyPer organoids than by 2D monolayers. Finally, carboplatin treatment of HyPer-expressing PDOs induced higher oxidative stress in organoids derived from carboplatin-resistant patients than from those derived from carboplatin-sensitive patients. CONCLUSIONS: Our study showed that biosensors provide a useful method of studying dynamic metabolic changes in preclinical models of OC, including 3D organoids and intravital imaging. As 3D models of OC continue to evolve, the repertoire of biosensors will likely serve as valuable tools to probe the metabolic changes of clinical importance in OC.


Assuntos
Técnicas Biossensoriais , Neoplasias Ovarianas , Humanos , Feminino , Carboplatina/uso terapêutico , Carcinoma Epitelial do Ovário , NADP/uso terapêutico , NAD/uso terapêutico , Meios de Cultivo Condicionados , Neoplasias Ovarianas/metabolismo , Difosfato de Adenosina/uso terapêutico , Trifosfato de Adenosina/uso terapêutico , Microambiente Tumoral
4.
Cancer Cell ; 40(12): 1448-1453, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270276

RESUMO

3D patient tumor avatars (3D-PTAs) hold promise for next-generation precision medicine. Here, we describe the benefits and challenges of 3D-PTA technologies and necessary future steps to realize their potential for clinical decision making. 3D-PTAs require standardization criteria and prospective trials to establish clinical benefits. Innovative trial designs that combine omics and 3D-PTA readouts may lead to more accurate clinical predictors, and an integrated platform that combines diagnostic and therapeutic development will accelerate new treatments for patients with refractory disease.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/diagnóstico , Medicina de Precisão , Estudos Prospectivos , Oncologia
5.
Stem Cell Reports ; 17(9): 1959-1975, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35985334

RESUMO

In vitro tissue models hold great promise for modeling diseases and drug responses. Here, we used emulsion microfluidics to form micro-organospheres (MOSs), which are droplet-encapsulated miniature three-dimensional (3D) tissue models that can be established rapidly from patient tissues or cells. MOSs retain key biological features and responses to chemo-, targeted, and radiation therapies compared with organoids. The small size and large surface-to-volume ratio of MOSs enable various applications including quantitative assessment of nutrient dependence, pathogen-host interaction for anti-viral drug screening, and a rapid potency assay for chimeric antigen receptor (CAR)-T therapy. An automated MOS imaging pipeline combined with machine learning overcomes plating variation, distinguishes tumorspheres from stroma, differentiates cytostatic versus cytotoxic drug effects, and captures resistant clones and heterogeneity in drug response. This pipeline is capable of robust assessments of drug response at individual-tumorsphere resolution and provides a rapid and high-throughput therapeutic profiling platform for precision medicine.


Assuntos
Antineoplásicos , Organoides , Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Microfluídica , Medicina de Precisão
6.
Cell Rep ; 39(13): 111012, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35767962

RESUMO

Ovarian cancer (OC) is the most lethal gynecological malignancy, with aggressive metastatic disease responsible for the majority of OC-related deaths. In particular, OC tumors preferentially metastasize to and proliferate rapidly in the omentum. Here, we show that metastatic OC cells experience increased oxidative stress in the omental microenvironment. Metabolic reprogramming, including upregulation of the pentose phosphate pathway (PPP), a key cellular redox homeostasis mechanism, allows OC cells to compensate for this challenge. Inhibition of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, reduces tumor burden in pre-clinical models of OC, suggesting that this adaptive metabolic dependency is important for OC omental metastasis.


Assuntos
Glucosefosfato Desidrogenase , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Feminino , Glucosefosfato Desidrogenase/metabolismo , Humanos , Omento/metabolismo , Estresse Oxidativo , Via de Pentose Fosfato , Microambiente Tumoral
7.
Cell Stem Cell ; 29(6): 905-917.e6, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35508177

RESUMO

Patient-derived xenografts (PDXs) and patient-derived organoids (PDOs) have been shown to model clinical response to cancer therapy. However, it remains challenging to use these models to guide timely clinical decisions for cancer patients. Here, we used droplet emulsion microfluidics with temperature control and dead-volume minimization to rapidly generate thousands of micro-organospheres (MOSs) from low-volume patient tissues, which serve as an ideal patient-derived model for clinical precision oncology. A clinical study of recently diagnosed metastatic colorectal cancer (CRC) patients using an MOS-based precision oncology pipeline reliably assessed tumor drug response within 14 days, a timeline suitable for guiding treatment decisions in the clinic. Furthermore, MOSs capture original stromal cells and allow T cell penetration, providing a clinical assay for testing immuno-oncology (IO) therapies such as PD-1 blockade, bispecific antibodies, and T cell therapies on patient tumors.


Assuntos
Neoplasias do Colo , Medicina de Precisão , Neoplasias do Colo/patologia , Humanos , Imunoterapia , Organoides/patologia
8.
iScience ; 23(11): 101719, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33205026

RESUMO

Colon cancer remains the third most common cause of cancer in the US, and the third most common cause of cancer death. Worldwide, colon cancer is the second most common cause of cancer and cancer deaths. At least 25% of patients still present with metastatic disease, and at least 25-30% will develop metastatic colon cancer in the course of their disease. While chemotherapy and surgery remain the mainstay of treatment, understanding the fundamental cellular niche and mechanical properties that result in metastases would facilitate both prevention and cure. Advances in biomaterials, novel 3D primary human cells, modelling using microfluidics and the ability to alter the physical environment, now offers a unique opportunity to develop and test impactful treatment.

9.
Mol Cell ; 80(3): 554, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157016
10.
Mol Cell ; 78(6): 1034-1044, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32504556

RESUMO

Malignant cells remodel their metabolism to meet the demands of uncontrolled cell proliferation. These demands lead to differential requirements in energy, biosynthetic precursors, and signaling intermediates. Both genetic programs arising from oncogenic events and transcriptional programs and epigenomic events are important in providing the necessary metabolic network activity. Accumulating evidence has established that environmental factors play a major role in shaping cancer cell metabolism. For metabolism, diet and nutrition are the major environmental aspects and have emerged as key components in determining cancer cell metabolism. In this review, we discuss these emerging concepts in cancer metabolism and how diet and nutrition influence cancer cell metabolism.


Assuntos
Dietoterapia/métodos , Neoplasias/dietoterapia , Neoplasias/metabolismo , Carcinogênese/metabolismo , Proliferação de Células/genética , Dieta/tendências , Dietoterapia/tendências , Metabolismo Energético/genética , Humanos , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Neoplasias/genética , Terapia Nutricional/métodos , Transdução de Sinais/genética
11.
Trends Cell Biol ; 29(9): 695-703, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31160120

RESUMO

Acetate and the related metabolism of acetyl-coenzyme A (acetyl-CoA) confer numerous metabolic functions, including energy production, lipid synthesis, and protein acetylation. Despite its importance as a nutrient for cellular metabolism, its source has been unclear. Recent studies have provided evidence to support the existence of a de novo pathway for acetate production derived from pyruvate, the end product of glycolysis. This mechanism of pyruvate-derived acetate generation could have far-reaching implications for the regulation of central carbon metabolism. In this Opinion, we discuss our current understanding of acetate metabolism in the context of cell-autonomous metabolic regulation, cell-cell interactions, and systemic physiology. Applications relevant to health and disease, particularly cancer, are emphasized.


Assuntos
Acetatos/metabolismo , Glucose/metabolismo , Neoplasias/metabolismo , Acetilcoenzima A/biossíntese , Acetilcoenzima A/metabolismo , Acetilação , Glicólise , Humanos , Lipogênese , Mitocôndrias/metabolismo
13.
Sci Am ; 305(3): 22, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21870437
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA