Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(22): 22800-22820, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37934489

RESUMO

Degeneration of photoreceptors in age-related macular degeneration (AMD) is associated with oxidative stress due to the intense aerobic metabolism of rods and cones that if not properly counterbalanced by endogenous antioxidant mechanisms can precipitate photoreceptor degeneration. In spite of being a priority eye disease for its high incidence in the elderly, no effective treatments for AMD exist. While systemic administration of antioxidants has been unsuccessful in slowing down degeneration, locally administered rare-earth nanoparticles were shown to be effective in preventing retinal photo-oxidative damage. However, because of inherent problems of dispersion in biological media, limited antioxidant power, and short lifetimes, these NPs are still confined to the preclinical stage. Here we propose platinum nanoparticles (PtNPs), potent antioxidant nanozymes, as a therapeutic tool for AMD. PtNPs exhibit high catalytic activity at minimal concentrations and protect primary neurons against oxidative insults and the ensuing apoptosis. We tested the efficacy of intravitreally injected PtNPs in preventing or mitigating light damage produced in dark-reared albino Sprague-Dawley rats by in vivo electroretinography (ERG) and ex vivo retina morphology and electrophysiology. We found that both preventive and postlesional treatments with PtNPs increased the amplitude of ERG responses to light stimuli. Ex vivo recordings demonstrated the selective preservation of ON retinal ganglion cell responses to light stimulation in lesioned retinas treated with PtNPs. PtNPs administered after light damage significantly preserved the number of photoreceptors and inhibited the inflammatory response to degeneration, while the preventive treatment had a milder effect. The data indicate that PtNPs can effectively break the vicious cycle linking oxidative stress, degeneration, and inflammation by exerting antioxidant and anti-inflammatory actions. The increased photoreceptor survival and visual performances in degenerated retinas, together with their high biocompatibility, make PtNPs a potential strategy to cure AMD.


Assuntos
Degeneração Macular , Nanopartículas Metálicas , Degeneração Retiniana , Humanos , Ratos , Animais , Idoso , Platina/farmacologia , Platina/uso terapêutico , Antioxidantes/farmacologia , Nanopartículas Metálicas/uso terapêutico , Retina/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Degeneração Macular/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/complicações , Ratos Sprague-Dawley , Luz , Modelos Animais de Doenças
2.
Biomater Sci ; 10(13): 3514-3526, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35603779

RESUMO

Iron oxide nanoparticles (IONPs) have been largely investigated in a plethora of biological fields for their interesting physical-chemical properties, which make them suitable for application in cancer therapy, neuroscience, and imaging. Several encouraging results have been reported in these contexts. However, the possible toxic effects of some IONP formulations can limit their applicability. In this work, IONPs were synthesized with a carbon shell (IONP@C), providing enhanced stability both as colloidal dispersion and in the biological environment. We conducted a careful multiparametric evaluation of IONP@C biological interactions in vitro, providing them with an in vivo-like biological identity. Our hybrid nanoformulation showed no cytotoxic effects on a widely employed model of alveolar epithelial cells for a variety of concentrations and exposure times. The IONP@C were efficiently internalized and TEM analysis allowed the protective role of the carbon shell against intracellular degradation to be assessed. Intracellular redistribution of the IONP@C from the lysosomes to the lamellar bodies was also observed after 72 hours.


Assuntos
Células Epiteliais Alveolares , Carbono , Células Epiteliais Alveolares/metabolismo , Carbono/farmacologia , Compostos Férricos/química , Lisossomos/metabolismo
3.
Nanomaterials (Basel) ; 11(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207455

RESUMO

Colorectal cancer (CRC) is a widespread and lethal disease. Relapses of the disease and metastasis are very common in instances of CRC, so adjuvant therapies have a crucial role in its treatment. Systemic toxic effects and the development of resistance during therapy limit the long-term efficacy of existing adjuvant therapeutic approaches. Consequently, the search for alternative strategies is necessary. Photothermal therapy (PTT) represents an innovative treatment for cancer with great potential. Here, we synthesize branched gold nanoparticles (BGNPs) as attractive agents for the photothermal eradication of colon cancer cells. By controlling the NP growth process, large absorption in the first NIR biological window was obtained. The FBS dispersed BGNPs are stable in physiological-like environments and show an extremely efficient light-to-heat conversion capability when irradiated with an 808-nm laser. Sequential cycles of heating and cooling do not affect the BGNP stability. The uptake of BGNPs in colon cancer cells was confirmed using flow cytometry and confocal microscopy, exploiting their intrinsic optical properties. In dark conditions, BGNPs are fully biocompatible and do not compromise cell viability, while an almost complete eradication of colon cancer cells was observed upon incubation with BGNPs and irradiation with an 808-nm laser source. The PTT treatment is characterized by an extremely rapid onset of action that leads to cell membrane rupture by induced hyperthermia, which is the trigger that promotes cancer cell death.

4.
Nanomedicine ; 12(6): 1663-701, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27013135

RESUMO

Ultrasmall nanoparticulate materials with core sizes in the 1-3nm range bridge the gap between single molecules and classical, larger-sized nanomaterials, not only in terms of spatial dimension, but also as regards physicochemical and pharmacokinetic properties. Due to these unique properties, ultrasmall nanoparticles appear to be promising materials for nanomedicinal applications. This review overviews the different synthetic methods of inorganic ultrasmall nanoparticles as well as their properties, characterization, surface modification and toxicity. We moreover summarize the current state of knowledge regarding pharmacokinetics, biodistribution and targeting of nanoscale materials. Aside from addressing the issue of biomolecular corona formation and elaborating on the interactions of ultrasmall nanoparticles with individual cells, we discuss the potential diagnostic, therapeutic and theranostic applications of ultrasmall nanoparticles in the emerging field of nanomedicine in the final part of this review.


Assuntos
Nanomedicina/tendências , Nanopartículas/uso terapêutico , Humanos , Nanoestruturas , Nanotecnologia , Distribuição Tecidual
5.
Eur J Med Chem ; 85: 87-94, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25078312

RESUMO

New gold(I) complexes containing two 1-[2-(diethylamino)ethyl]imidazolydene ligands have been synthesized and characterized. The X-ray structures of two key compounds are presented. All complexes have been tested for their antiproliferative activities in prostate cancer cell line PC-3. Lipophilicity (Log P) has been determined for these complexes. The most active complex has been tested for the cytotoxic activities in five human cancer cell lines and primary endothelial cells. The most active complex demonstrated a potent selectivity for cancer cells.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Ouro/química , Compostos Heterocíclicos/química , Metano/análogos & derivados , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Ligantes , Metano/química , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA