Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9683, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690595

RESUMO

The novel derivatives of tetrahydropyridothienopyrimidine-based compounds have been designed and efficiently synthesized with good yields through seven steps reaction. The anticancer activity of compounds 11a-y has been evaluated against MCF-7, PC-3, HEPG-2, SW-480, and HUVEC cell lines by MTT assay. The target compounds showed IC50 values between 2.81-29.6 µg/mL and were compared with sorafenib as a reference drug. Among them, compound 11n showed high cytotoxic activity against four out of five examined cell lines and was 14 times more selective against MRC5. The flow cytometric analysis confirmed the induction of apoptotic cell death by this compound against HUVEC and MCF-7 cells. In addition, 11n caused sub-G1 phase arrest in the cell cycle arrest. Besides, this compound induced anti-angiogenesis in CAM assay and increased the level of caspase-3 by 5.2 fold. The western-blot analysis of the most active compound, 11n, revealed the inhibition of VEGFR-2 phosphorylation. Molecular docking study also showed the important interactions for compound 11n.


Assuntos
Antineoplásicos , Ureia , Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Ureia/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
J Egypt Natl Canc Inst ; 34(1): 13, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35342925

RESUMO

BACKGROUND: Despite antitumor properties, chemotherapy medication can create conditions in tumor cells that work in favor of the tumor. Doxorubicin, commonly prescribed chemotherapy agents, can increase the risk of migration and invasion of tumor cells through overexpression of the CXCR4 gene by affecting downstream signaling pathways. The regulatory role of CXCR7 on CXCR4 function has been demonstrated. Therefore, it is hypothesized that combining doxorubicin with another anticancer drug could be a promising approach. METHODS: In this research, we evaluated the anti-invasive property of pioglitazone along with antitumor effects of doxorubicin on MDA-MB-231 breast cancer cell lines. RESULTS: There was no significant difference between two treatment groups in neither the expression nor changes in the expression of CXCR7 and CXCR4 genes (P < 0.05). Pioglitazone-doxorubicin combination reduced cell migration in tumor cells to a significantly higher extent compared to doxorubicin alone (P < 0.05). CONCLUSIONS: Co-administration of pioglitazone and doxorubicin might reduce cell migration in breast cancer tumor cells, and that cell migration function is independent of some specific proteins.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Feminino , Humanos , Invasividade Neoplásica/genética , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico
3.
Cell Signal ; 92: 110248, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35041985

RESUMO

OBJECTIVE: Membrane type-matrix metalloproteinases (MT-MMPs) are known as key regulators of cancer progression/metastasis. However, their roles in the growth and progression of multiple myeloma (MM) have not been yet elucidated. METHODS AND MATERIALS: The expression of 6 MT-MMPs in MM, B cell lines, and normal peripheral blood (PB) cells were measured by RT-PCR, qRT-PCR, flow cytometry, western blotting, and immunocytochemistry. B lymphocytes, CD19-/CD138-, and CD19-/CD138+ cells, known as malignant plasma cells (MPC), were sorted from bone marrow (BM) aspirations of 10 MM patients, and MT2-MMP expression was examined in these cells using qRT-PCR, flow cytometry and immunohistochemistry, and western blotting. Moreover, the expression of MT2-MMP in BM biopsies from 13 normal individuals and 14 MM patients was analyzed by immunohistochemistry. MT2-MMP was also knocked down in U266 cells using siRNA technology and the adhesion, invasion, migration abilities, and cell proliferation were determined and compared with scrambled ones in both in vitro and in vivo studies. RESULTS: Our results showed that MT2-MMP expression is significantly higher in MM cell lines and MPC cells than B cell lines and other PB- or BM-derived cells. MT2-MMP is expressed in BM biopsies from all 14 patients with MM, and 67.85% ± 32.38 of BM cells were positive for MT2-MMP. In contrast, only 0.38 ± 0.76 of BM biopsies from normal individuals were positive for MT2-MMP. Importantly, MT2-MMP was expressed in all the patients' BM biopsies at the diagnosis, but not in the remission phase. MT2-MMP siRNA significantly decreased adhesion, invasion, migration, and 3D cell proliferation of U266 cells. Moreover, in the xenographic model, MT2-MMP siRNA prevented the growth and development of plasmacytoma. Taken together, these data demonstrate that MT2-MMP is strongly expressed in MM cells and plays important role in the growth and progression of these cells, suggesting that MT2-MMP is an appropriate biomarker in diagnosis and therapeutic interventions of MM.


Assuntos
Metaloproteinase 15 da Matriz/metabolismo , Mieloma Múltiplo , Movimento Celular , Humanos , Imuno-Histoquímica , Metaloproteinase 15 da Matriz/genética , Metaloproteinases da Matriz Associadas à Membrana , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo
4.
Bioorg Chem ; 108: 104553, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33376012

RESUMO

A series of quinazolin-4(3H)-one based agents containing thiadiazole-urea were designed, synthesized, and biologically evaluated. The proliferation rate of PC3 cells was moderately reduced by compound 9f (IC50 = 17.7 µM)which was comparable with sorafenib (IC50 = 17.3 µM). There was also a significant reduction in the number of HUVEC cells, when they were exposed to compound 9y (IC50 = 6.1 µM). To test the potential of compounds in inducing apoptosis, Annexin V-FITC/propidium iodide double staining assay was used. After the treatment of HUVEC cells with 9f, they underwent apoptotic effects. A substantial effort was dedicated to gathering comprehensive data across CAM assay. These data showed that 9f moderately inhibits the growth of corresponding blood vessels. Finally, the outcomes of Western blotting proposed a mechanism of action, by which the phosphorylation of VEGFR-2 is inhibited by compounds 9f and 9y.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Quinazolinonas/farmacologia , Tiadiazóis/farmacologia , Ureia/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Quinazolinonas/síntese química , Quinazolinonas/química , Relação Estrutura-Atividade , Tiadiazóis/química , Ureia/química
5.
Eur J Med Chem ; 209: 112942, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328104

RESUMO

Inhibition of angiogenesis is a promising strategy for the treatment of cancer. Herein, we describe the design and synthesis of thieno[2,3-d]pyrimidine-1,3,4-thiadiazole-aryl urea derivatives 11a-m to evaluate their efficacy in the chick chorioallantoic membrane (CAM) assay. Among target agents, 11i had a considerable activity against prostate cancer cell line, PC3 (IC50 = 3.6 µM). Moreover, induction of apoptosis, good inhibitory activity against the growth of capillary blood vessels, and inhibition of VEGFR-2 phosphorylation were noticeable parameters which convinced us that 11i could be considered as a promising candidate for the discovery of novel drugs to treat tumors, particularly prostate cancer.


Assuntos
Inibidores da Angiogênese/farmacologia , Desenho de Fármacos , Pirimidinas/química , Pirimidinas/farmacologia , Ureia/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neovascularização Patológica/tratamento farmacológico , Pirimidinas/síntese química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA