Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38927505

RESUMO

This study aims to determine the effectiveness of administering 80 ppm nitric oxide in reducing kidney injury, mitochondrial dysfunction and regulated cell death in kidneys during experimental perfusion. Twenty-four sheep were randomized into four groups: two groups received 80 ppm NO conditioning with 90 min of cardiopulmonary bypass (CPB + NO) or 90 min of CPB and hypothermic circulatory arrest (CPB + CA + NO), while two groups received sham protocols (CPB and CPB + CA). Kidney injury was assessed using laboratory (neutrophil gelatinase-associated lipocalin, an acute kidney injury biomarker) and morphological methods (morphometric histological changes in kidney biopsy specimens). A kidney biopsy was performed 60 min after weaning from mechanical perfusion. NO did not increase the concentrations of inhaled NO2 and methemoglobin significantly. The NO-conditioning groups showed less severe kidney injury and mitochondrial dysfunction, with statistical significance in the CPB + NO group and reduced tumor necrosis factor-α expression as a trigger of apoptosis and necroptosis in renal tissue in the CPB + CA + NO group compared to the CPB + CA group. The severity of mitochondrial dysfunction in renal tissue was insignificantly lower in the NO-conditioning groups. We conclude that NO administration is safe and effective at reducing kidney injury, mitochondrial dysfunction and regulated cell death in kidneys during experimental CPB.

2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732142

RESUMO

The high mortality rate among patients with acute myocardial infarction (AMI) is one of the main problems of modern cardiology. It is quite obvious that there is an urgent need to create more effective drugs for the treatment of AMI than those currently used in the clinic. Such drugs could be enzyme-resistant peptide analogs of glucagon-like peptide-1 (GLP-1). GLP-1 receptor (GLP1R) agonists can prevent ischemia/reperfusion (I/R) cardiac injury. In addition, chronic administration of GLP1R agonists can alleviate the development of adverse cardiac remodeling in myocardial infarction, hypertension, and diabetes mellitus. GLP1R agonists can protect the heart against oxidative stress and reduce proinflammatory cytokine (IL-1ß, TNF-α, IL-6, and MCP-1) expression in the myocardium. GLP1R stimulation inhibits apoptosis, necroptosis, pyroptosis, and ferroptosis of cardiomyocytes. The activation of the GLP1R augments autophagy and mitophagy in the myocardium. GLP1R agonists downregulate reactive species generation through the activation of Epac and the GLP1R/PI3K/Akt/survivin pathway. The GLP1R, kinases (PKCε, PKA, Akt, AMPK, PI3K, ERK1/2, mTOR, GSK-3ß, PKG, MEK1/2, and MKK3), enzymes (HO-1 and eNOS), transcription factors (STAT3, CREB, Nrf2, and FoxO3), KATP channel opening, and MPT pore closing are involved in the cardioprotective effect of GLP1R agonists.


Assuntos
Cardiotônicos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Transdução de Sinais , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon
3.
Cells ; 12(12)2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37371092

RESUMO

Acute myocardial infarction (AMI) remains the leading cause of mortality in the world, highlighting an urgent need for the development of novel, more effective approaches for the treatment of AMI. Remote postconditioning (RPost) of the heart could be a useful approach. It was demonstrated that RPost triggers infarct size reduction, improves contractile function of the heart in reperfusion, mitigates apoptosis, and stimulates autophagy in animals with coronary artery occlusion and reperfusion. Endogenous opioid peptides and adenosine could be involved in RPost. It was found that kinases and NO-synthase participate in RPost. KATP channels, MPT pore, and STAT3 could be hypothetical end-effectors of RPost. Metabolic syndrome and old age abolish the cardioprotective effect of RPost in rats. The data on the efficacy of RPost in clinical practice are inconsistent. These data are discussed in the review.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Infarto do Miocárdio/metabolismo , Coração , Transdução de Sinais
4.
Fundam Clin Pharmacol ; 37(6): 1020-1049, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37218378

RESUMO

BACKGROUND: The use of percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI) is associated with a mortality rate of 5%-7%. It is clear that there is an urgent need to develop new drugs that can effectively prevent cardiac reperfusion injury. ATP-sensitive K+ (KATP ) channel openers (KCOs) can be classified as such drugs. RESULTS: KCOs prevent irreversible ischemia and reperfusion injury of the heart. KATP channel opening promotes inhibition of apoptosis, necroptosis, pyroptosis, and stimulation of autophagy. KCOs prevent the development of cardiac adverse remodeling and improve cardiac contractility in reperfusion. KCOs exhibit antiarrhythmic properties and prevent the appearance of the no-reflow phenomenon in animals with coronary artery occlusion and reperfusion. Diabetes mellitus and a cholesterol-enriched diet abolish the cardioprotective effect of KCOs. Nicorandil, a KCO, attenuates major adverse cardiovascular event and the no-reflow phenomenon, reduces infarct size, and decreases the incidence of ventricular arrhythmias in patients with acute myocardial infarction. CONCLUSION: The cardioprotective effect of KCOs is mediated by the opening of mitochondrial KATP (mitoKATP ) and sarcolemmal KATP (sarcKATP ) channels, triggered free radicals' production, and kinase activation.


Assuntos
Traumatismo por Reperfusão Miocárdica , Fenômeno de não Refluxo , Intervenção Coronária Percutânea , Humanos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Apoptose , Reperfusão , Trifosfato de Adenosina , Canais KATP
5.
Biomedicines ; 11(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36830779

RESUMO

The aim of the study was to compare the morphological features of epicardial adipose tissue (EAT) adipocyte with the circulating inflammatory biomarkers and parameters of extracellular matrix remodeling in patients with coronary artery disease (CAD). We recruited 42 patients with CAD (m/f 28/14) who were scheduled for coronary artery bypass graft surgery (CABG). EAT adipocytes were obtained by the enzymatic method from intraoperative adipose tissue samples. Concentrations of secreted and lipoprotein-associated phospholipase A2 (sPLA2 and LpPLA2), TNF-α, IL-1ß, IL-6, IL-10, high-sensitive C-reactive protein (hsCRP), metalloproteinase-9 (MMP-9), MMP-2, C-terminal cross-linking telopeptide of type I collagen (CTX-I), and tissue inhibitor of metalloproteinase 1 (TIMP-1) were measured in blood serum. Patients were divided into two groups: group 1-with mean EAT adipocytes' size ≤ 87.32 µm; group 2-with mean EAT adipocytes' size > 87.32 µm. Patients of group 2 had higher concentrations of triglycerides, hsCRP, TNF-α, and sPLA2 and a lower concentration of CTX-I. A multiple logistic regression model was created (RN2 = 0.43, p = 0.0013). Concentrations of TNF-α, sPLA2 and CTX-I appeared to be independent determinants of the EAT adipocyte hypertrophy. ROC analysis revealed the 78% accuracy, 71% sensitivity, and 85% specificity of the model, AUC = 0.82. According to our results, chronic low-grade inflammation and extracellular matrix remodeling are closely associated with the development of hypertrophy of EAT adipocytes, with serum concentrations of TNF-α, sPLA2 and CTX-I being the key predictors, describing the variability of epicardial adipocytes' size.

6.
Korean Circ J ; 52(10): 737-754, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36217596

RESUMO

Ischemic and reperfusion injuries of the heart underlie the pathogenesis of acute myocardial infarction (AMI) and sudden cardiac death. The mortality rate is still high and is 5-7% in patients with ST-segment elevation myocardial infarction. The review is devoted to pharmacological approaches to limitation of ischemic and reperfusion injuries of the heart. The article analyzes experimental evidence and the clinical data on the effects of P2Y12 receptor antagonists on the heart's tolerance to ischemia/reperfusion in animals with coronary artery occlusion and reperfusion and also in patients with AMI. Chronic administration of ticagrelor prevented adverse remodeling of the heart. There is evidence that sphingosine-1-phosphate is the molecule that mediates the infarct-reducing effect of P2Y12 receptor antagonists. It was discussed a role of adenosine in the cardioprotective effect of ticagrelor.

7.
Apoptosis ; 27(9-10): 697-719, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35986803

RESUMO

In the last 10 years, mortality from acute myocardial infarction (AMI) has not significantly decreased. This situation is associated with the absence in clinical practice of highly effective drugs capable of preventing the occurrence of reperfusion injury of the heart. Necroptosis inhibitors may become prototypes for the creation of highly effective drugs that increase cardiac tolerance to ischemic/reperfusion (I/R) and reduce the mortality rate in patients with AMI. Necroptosis is involved in I/R cardiac injury and inhibition of RIPK1 or RIPK3 contributes to an increase in cardiac tolerance to I/R. Necroptosis could also be involved in the development of adverse remodeling of the heart. It is unclear whether pre- and postconditioning could inhibit necroptosis of cardiomyocytes and endothelial cells. The role of necroptosis in coronary microvascular obstruction and the no-reflow phenomenon also needs to be studied. MicroRNAs and LncRNAs can regulate necroptotic cell death. Ca2+ overload and reactive oxygen species could be the triggers of necroptosis. Activation of kinases (p38, JNK1, Akt, and mTOR) could promote necroptotic cell death. The interaction of necroptosis, apoptosis, autophagy, ferroptosis, and pyroptosis is discussed. The water-soluble necroptosis inhibitors may be highly effective drugs for treatment of AMI or stroke. It is possible that microRNAs may become the basis for creating drugs for treatment of diseases triggered by I/R of organs.


Assuntos
MicroRNAs , Infarto do Miocárdio , RNA Longo não Codificante , Apoptose , Células Endoteliais/metabolismo , Humanos , MicroRNAs/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Necroptose , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Reperfusão , Serina-Treonina Quinases TOR/metabolismo , Água/metabolismo
8.
Biomedicines ; 10(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36009601

RESUMO

Purpose. This work investigates the relations between the production of reactive oxygen species (ROS) by epicardial adipose tissue (EAT) adipocytes and parameters of glucose/insulin metabolism, circulating adipokines levels, and severity of coronary atherosclerosis in patients with coronary artery disease (CAD); establishing significant determinants describing changes in ROS EAT in this category of patients. Material and methods. This study included 19 patients (14 men and 5 women, 53−72 y.o., 6 patients with diabetes mellitus type 2; 5 patients with prediabetes), with CAD, who underwent coronary artery bypass graft surgery. EAT adipocytes were isolated by the enzymatic method from intraoperative explants obtained during coronary artery bypass grafting. The size of EAT adipocytes and ROS level were determined. Results. The production of ROS by EAT adipocytes demonstrated a direct correlation with the level of postprandial glycemia (rs = 0.62, p < 0.05), and an inverse correlation with serum adiponectin (rs = −0.50, p = 0.026), but not with general and abdominal obesity, EAT thickness, and dyslipidemia. Regression analysis demonstrated that the increase in ROS of EAT adipocytes occurs due to the interaction of the following factors: postprandial glycemia (ß = 0.95), postprandial insulin (ß = 0.24), and reduced serum adiponectin (ß = −0.20). EAT adipocytes in patients with diabetes and prediabetes manifested higher ROS production than in patients with normoglycemia. Although there was no correlation between the production of ROS by EAT adipocytes and Gensini score in the total group of patients, higher rates of oxidative stress were observed in EAT adipocytes from patients with a Gensini score greater than median Gensini score values (≥70.55 points, Gr.B), compared to patients with less severe coronary atherosclerosis (<70.55 points, Gr.A). Of note, the frequency of patients with diabetes and prediabetes was higher among the patients with the most severe coronary atherosclerosis (Gr.B) than in the Gr.A. Conclusions. Our data have demonstrated for the first time that systemic impairments of glucose/insulin metabolism and a decrease in serum adiponectin are significant independent determinants of oxidative stress intensity in EAT adipocytes in patients with severe coronary atherosclerosis. The possible input of the interplay between oxidative stress in EAT adipocytes and metabolic disturbances to the severity of coronary atherosclerosis requires further investigation.

9.
Biomedicines ; 9(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440802

RESUMO

Changes in the structural and functional characteristics of the epicardial adipose tissue (EAT) are recognized as one of the factors in the development of cardiometabolic diseases. However, the generally accepted quantitative assessment of the accumulation of EAT does not reflect the size of adipocyte and presence of adipocyte hypertrophy in this fat depot. Overall contribution of adipocyte hypertrophy to the development and progression of coronary atherosclerosis remains unexplored. Objective: To compare the morphological characteristics of EAT adipocyte and its sensitivity to insulin with the CAD severity, as well as to identify potential factors involved in the realization of this relationship. The present study involved 24 patients (m/f 16/8) aged 53-72 years with stable CAD, who underwent coronary artery bypass graft surgery. Adipocytes were isolated enzymatically from EAT explants obtained during the operation. The severity of CAD was assessed by calculating the Gensini score according to selective coronary angiography. Insulin resistance of EAT adipocytes was evaluated by reactivity to insulin. In patients with an average size of EAT adipocytes equal to or exceeding the median (87 µm) the percentage of hypertrophic adipocytes was twice as high as in patients in whom the average size of adipocytes was less than 87 µm. This group of patients was also characterized by the higher rate of the Gensini score, lower adiponectin levels, and more severe violation of carbohydrate metabolism. We have revealed direct nonparametric correlation between the size of EAT adipocytes and the Gensini score (rs = 0.56, p = 0.00047). The number of hypertrophic EAT adipocytes showed a direct nonparametric correlation with the Gensini score (rs = 0.6, p = 0.002). Inverse nonparametric correlations were found between the serum adiponectin level and size (rs = -0.60, p = 0.001), hypertrophy of adipocytes (rs = -0.67, p = 0.00), and Gensini score (rs = -0.81, p = 0.00007). An inverse nonparametric correlation was found between the Gensini score and sensitivity of EAT adipocytes to insulin, estimated by the intracellular redox response (rs = -0.90, p = 0.037) and decrease in lipolysis rate upon insulin addition (rs = -0.40, p = 0.05). The intracellular redox response of adipocytes to insulin was directly correlated with fasting insulin and inversely with postprandial insulin. Our data indicate that the size and degree of hypertrophy of the epicardial adipocytes are related to the CAD severity. According to our results, insulin resistance of adipocytes may be considered as one of the factors mediating this relationship.

10.
J Cardiovasc Pharmacol Ther ; 24(5): 403-421, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31035796

RESUMO

A humoral mechanism of cardioprotection by remote ischemic preconditioning (RIP) has been clearly demonstrated in various models of ischemia-reperfusion including upper and lower extremities, liver, and the mesenteric and renal arteries. A wide range of humoral factors for RIP have been proposed including hydrophobic peptides, opioid peptides, adenosine, prostanoids, endovanilloids, endocannabinoids, calcitonin gene-related peptide, leukotrienes, noradrenaline, adrenomedullin, erythropoietin, apolipoprotein, A-I glucagon-like peptide-1, interleukin 10, stromal cell-derived factor 1, and microRNAs. Virtually, all of the components of ischemic preconditioning's signaling pathway such as nitric oxide synthase, protein kinase C, redox signaling, PI3-kinase/Akt, glycogen synthase kinase ß, ERK1/2, mitoKATP channels, Connexin 43, and STAT were all found to play a role. The signaling pattern also depends on which remote vascular bed was subjected to ischemia and on the time between applying the rip and myocardial ischemia occurs. Because there is convincing evidence for many seemingly diverse humoral components in RIP, the most likely explanation is that the overall mechanism is complex like that seen in ischemic preconditioning where multiple components are both in series and in parallel and interact with each other. Inhibition of any single component in the right circumstance may block the resulting protective effect, and selectively activating that component may trigger the protection. Identifying the humoral factors responsible for RIP might be useful in developing drugs that confer RIP's protection in a more comfortable and reliable manner.


Assuntos
Precondicionamento Isquêmico , Infarto do Miocárdio/prevenção & controle , Miocárdio/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais , Animais , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Fluxo Sanguíneo Regional , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Resultado do Tratamento
11.
Curr Cardiol Rev ; 15(3): 177-187, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30813880

RESUMO

The hypothetical trigger of remote postconditioning (RPost) of the heart is the highmolecular weight hydrophobic peptide(s). Nitric oxide and adenosine serve as intermediaries between the peptide and intracellular structures. The role of the autonomic nervous system in RPost requires further study. In signaling mechanism RPost, kinases are involved: protein kinase C, PI3, Akt, JAK. The hypothetical end effector of RPost is aldehyde dehydrogenase-2, the transcription factors STAT, Nrf2, and also the BKCa channel.


Assuntos
Coração/fisiopatologia , Isquemia/fisiopatologia , Pós-Condicionamento Isquêmico/métodos , Miocárdio/metabolismo , Feminino , Humanos , Masculino , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA