Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 187(5): 1223-1237.e16, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428396

RESUMO

While CD4+ T cell depletion is key to disease progression in people living with HIV and SIV-infected macaques, the mechanisms underlying this depletion remain incompletely understood, with most cell death involving uninfected cells. In contrast, SIV infection of "natural" hosts such as sooty mangabeys does not cause CD4+ depletion and AIDS despite high-level viremia. Here, we report that the CARD8 inflammasome is activated immediately after HIV entry by the viral protease encapsulated in incoming virions. Sensing of HIV protease activity by CARD8 leads to rapid pyroptosis of quiescent cells without productive infection, while T cell activation abolishes CARD8 function and increases permissiveness to infection. In humanized mice reconstituted with CARD8-deficient cells, CD4+ depletion is delayed despite high viremia. Finally, we discovered loss-of-function mutations in CARD8 from "natural hosts," which may explain the peculiarly non-pathogenic nature of these infections. Our study suggests that CARD8 drives CD4+ T cell depletion during pathogenic HIV/SIV infections.


Assuntos
Infecções por HIV , Inflamassomos , Síndrome de Imunodeficiência Adquirida dos Símios , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Progressão da Doença , Infecções por HIV/patologia , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/fisiologia , Viremia , HIV/fisiologia
2.
Nat Commun ; 14(1): 4789, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553348

RESUMO

Route of immunization can markedly influence the quality of immune response. Here, we show that intradermal (ID) but not intramuscular (IM) modified vaccinia Ankara (MVA) vaccinations provide protection from acquisition of intravaginal tier2 simian-human immunodeficiency virus (SHIV) challenges in female macaques. Both routes of vaccination induce comparable levels of serum IgG with neutralizing and non-neutralizing activities. The protection in MVA-ID group correlates positively with serum neutralizing and antibody-dependent phagocytic activities, and envelope-specific vaginal IgA; while the limited protection in MVA-IM group correlates only with serum neutralizing activity. MVA-ID immunizations induce greater germinal center Tfh and B cell responses, reduced the ratio of Th1 to Tfh cells in blood and showed lower activation of intermediate monocytes and inflammasome compared to MVA-IM immunizations. This lower innate activation correlates negatively with induction of Tfh responses. These data demonstrate that the MVA-ID vaccinations protect against intravaginal SHIV challenges by modulating the innate and T helper responses.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Vacínia , Animais , Humanos , Feminino , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacínia/prevenção & controle , Macaca mulatta , Vaccinia virus , Vacinação , HIV , Anticorpos Antivirais
3.
Nat Commun ; 14(1): 1914, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024448

RESUMO

The immunopathological mechanisms driving the development of severe COVID-19 remain poorly defined. Here, we utilize a rhesus macaque model of acute SARS-CoV-2 infection to delineate perturbations in the innate immune system. SARS-CoV-2 initiates a rapid infiltration of plasmacytoid dendritic cells into the lower airway, commensurate with IFNA production, natural killer cell activation, and a significant increase of blood CD14-CD16+ monocytes. To dissect the contribution of lung myeloid subsets to airway inflammation, we generate a longitudinal scRNA-Seq dataset of airway cells, and map these subsets to corresponding populations in the human lung. SARS-CoV-2 infection elicits a rapid recruitment of two macrophage subsets: CD163+MRC1-, and TREM2+ populations that are the predominant source of inflammatory cytokines. Treatment with baricitinib (Olumiant®), a JAK1/2 inhibitor is effective in eliminating the influx of non-alveolar macrophages, with a reduction of inflammatory cytokines. This study delineates the major lung macrophage subsets driving airway inflammation during SARS-CoV-2 infection.


Assuntos
COVID-19 , Animais , Humanos , Macaca mulatta , SARS-CoV-2 , Macrófagos , Inflamação , Citocinas , Glicoproteínas de Membrana , Receptores Imunológicos
4.
Clin Infect Dis ; 75(11): 2000-2011, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35941737

RESUMO

BACKGROUND: Cervicovaginal CD4+ T cells are preferential targets for human immunodeficiency virus (HIV) infection and have consequently been used as a proxy measure for HIV susceptibility. The ECHO randomized trial offered a unique opportunity to consider the association between contraceptives and Th17-like cells within a trial designed to evaluate HIV risk. In a mucosal substudy of the ECHO trial, we compared the impact of initiating intramuscular depot medroxyprogesterone acetate (DMPA-IM), copper-IUD, and the levonorgestrel (LNG) implant on cervical T cells. METHODS: Cervical cytobrushes from 58 women enrolled in the ECHO trial were collected at baseline and 1 month after contraceptive initiation. We phenotyped cervical T cells using multiparameter flow cytometry, characterized the vaginal microbiome using 16s sequencing, and determined proteomic signatures associated with Th17-like cells using mass spectrometry. RESULTS: Unlike the LNG implant or copper-IUD, DMPA-IM was associated with higher frequencies of cervical Th17-like cells within 1 month of initiation (P = .012), including a highly susceptible, activated population co-expressing CD38, CCR5, and α4ß7 (P = .003). After 1 month, women using DMPA-IM also had more Th17-like cells than women using the Cu-IUD (P = .0002) or LNG implant (P = .04). Importantly, in women using DMPA-IM, proteomic signatures signifying enhanced mucosal barrier function were associated with the increased abundance of Th17-like cells. We also found that a non-Lactobacillus-dominant microbiome at baseline was associated with more Th17-like cells post-DMPA-IM (P = .03), although this did not influence barrier function. CONCLUSIONS: Our data suggest that DMPA-IM-driven accumulation of HIV-susceptible Th17-like cells might be counteracted by their role in maintaining mucosal barrier integrity. CLINICAL TRIALS REGISTRATION: NCT02550067.


Assuntos
Anticoncepcionais Femininos , Infecções por HIV , Feminino , Humanos , Anticoncepcionais Femininos/farmacologia , Cobre , Suscetibilidade a Doenças , HIV , Infecções por HIV/epidemiologia , Levanogestrel , Acetato de Medroxiprogesterona/farmacologia , Proteômica , África do Sul , Vagina
5.
JCI Insight ; 6(20)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34676832

RESUMO

Knowledge of immune activation in the brain during acute HIV infection is crucial for the prevention and treatment of HIV-associated neurological disorders. We determined regional brain (basal ganglia, thalamus, and frontal cortex) immune and virological profiles at 7 and 14 days post infection (dpi) with SIVmac239 in rhesus macaques. The basal ganglia and thalamus had detectable viruses earlier (7 dpi) than the frontal cortex (14 dpi) and contained higher quantities of viruses than the latter. Increased immune activation of astrocytes and significant infiltration of macrophages in the thalamus at 14 dpi coincided with elevated plasma viral load, and SIV colocalized only within macrophages. RNA signatures of proinflammatory responses, including IL-6, were detected at 7 dpi in microglia and interestingly, preceded reliable detection of virus in tissues and were maintained in the chronically infected macaques. Countering the proinflammatory response, the antiinflammatory response was not detected until increased TGF-ß expression was found in perivascular macrophages at 14 dpi. But this response was not detected in chronic infection. Our data provide evidence that the interplay of acute proinflammatory and antiinflammatory responses in the brain likely contributed to the overt neuroinflammation, where the immune activation preceded reliable viral detection.


Assuntos
Interleucina-6/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Doença Aguda , Animais , Modelos Animais de Doenças , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/patologia
6.
J Clin Invest ; 131(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33463551

RESUMO

Early appearance of neutralizing antibodies during acute hepatitis C virus (HCV) infection is associated with spontaneous viral clearance. However, the longitudinal changes in antigen-specific memory B cell (MBCs) associated with divergent HCV infection outcomes remain undefined. We characterized longitudinal changes in E2 glycoprotein-specific MBCs from subjects who either spontaneously resolved acute HCV infection or progressed to chronic infection, using single-cell RNA-seq and functional assays. HCV-specific antibodies in plasma from chronically infected subjects recognized multiple E2 genotypes, while those from spontaneous resolvers exhibited variable cross-reactivity to heterotypic E2. E2-specific MBCs from spontaneous resolvers peaked early after infection (4-6 months), following expansion of activated circulating T follicular helper cells (cTfh) expressing interleukin 21. In contrast, E2-specific MBCs from chronically infected subjects, enriched in VH1-69, expanded during persistent infection (> 1 year), in the absence of significantly activated cTfh expansion. Early E2-specific MBCs from spontaneous resolvers produced monoclonal antibodies (mAbs) with fewer somatic hypermutations and lower E2 binding but similar neutralization as mAbs from late E2-specific MBCs of chronically infected subjects. These findings indicate that early cTfh activity accelerates expansion of E2-specific MBCs during acute infection, which might contribute to spontaneous clearance of HCV.


Assuntos
Linfócitos B/imunologia , Proliferação de Células , Hepatite C Crônica/imunologia , RNA-Seq , Análise de Célula Única , Linfócitos T Auxiliares-Indutores/imunologia , Doença Aguda , Linfócitos B/patologia , Linhagem Celular Tumoral , Feminino , Hepatite C Crônica/patologia , Humanos , Masculino , Linfócitos T Auxiliares-Indutores/patologia
7.
Cell ; 183(5): 1354-1366.e13, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33065030

RESUMO

The COVID-19 pandemic has led to extensive morbidity and mortality throughout the world. Clinical features that drive SARS-CoV-2 pathogenesis in humans include inflammation and thrombosis, but the mechanistic details underlying these processes remain to be determined. In this study, we demonstrate endothelial disruption and vascular thrombosis in histopathologic sections of lungs from both humans and rhesus macaques infected with SARS-CoV-2. To define key molecular pathways associated with SARS-CoV-2 pathogenesis in macaques, we performed transcriptomic analyses of bronchoalveolar lavage and peripheral blood and proteomic analyses of serum. We observed macrophage infiltrates in lung and upregulation of macrophage, complement, platelet activation, thrombosis, and proinflammatory markers, including C-reactive protein, MX1, IL-6, IL-1, IL-8, TNFα, and NF-κB. These results suggest a model in which critical interactions between inflammatory and thrombosis pathways lead to SARS-CoV-2-induced vascular disease. Our findings suggest potential therapeutic targets for COVID-19.


Assuntos
COVID-19/complicações , COVID-19/imunologia , SARS-CoV-2/genética , Trombose/complicações , Doenças Vasculares/complicações , Idoso de 80 Anos ou mais , Animais , Lavagem Broncoalveolar , Proteína C-Reativa/análise , COVID-19/sangue , COVID-19/patologia , Ativação do Complemento , Citocinas/sangue , Feminino , Humanos , Inflamação/sangue , Inflamação/imunologia , Inflamação/virologia , Pulmão/patologia , Macaca mulatta , Macrófagos/imunologia , Masculino , Ativação Plaquetária , Trombose/sangue , Trombose/patologia , Transcriptoma , Doenças Vasculares/sangue , Doenças Vasculares/patologia
8.
J Virol ; 94(19)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32699094

RESUMO

The newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a pandemic of respiratory illness. Current evidence suggests that severe cases of SARS-CoV-2 are associated with a dysregulated immune response. However, little is known about how the innate immune system responds to SARS-CoV-2. In this study, we modeled SARS-CoV-2 infection using primary human airway epithelial (pHAE) cultures, which are maintained in an air-liquid interface. We found that SARS-CoV-2 infects and replicates in pHAE cultures and is directionally released on the apical, but not basolateral, surface. Transcriptional profiling studies found that infected pHAE cultures had a molecular signature dominated by proinflammatory cytokines and chemokine induction, including interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and CXCL8, and identified NF-κB and ATF-4 as key drivers of this proinflammatory cytokine response. Surprisingly, we observed a complete lack of a type I or III interferon (IFN) response to SARS-CoV-2 infection. However, pretreatment and posttreatment with type I and III IFNs significantly reduced virus replication in pHAE cultures that correlated with upregulation of antiviral effector genes. Combined, our findings demonstrate that SARS-CoV-2 does not trigger an IFN response but is sensitive to the effects of type I and III IFNs. Our studies demonstrate the utility of pHAE cultures to model SARS-CoV-2 infection and that both type I and III IFNs can serve as therapeutic options to treat COVID-19 patients.IMPORTANCE The current pandemic of respiratory illness, COVID-19, is caused by a recently emerged coronavirus named SARS-CoV-2. This virus infects airway and lung cells causing fever, dry cough, and shortness of breath. Severe cases of COVID-19 can result in lung damage, low blood oxygen levels, and even death. As there are currently no vaccines approved for use in humans, studies of the mechanisms of SARS-CoV-2 infection are urgently needed. Our research identifies an excellent system to model SARS-CoV-2 infection of the human airways that can be used to test various treatments. Analysis of infection in this model system found that human airway epithelial cell cultures induce a strong proinflammatory cytokine response yet block the production of type I and III IFNs to SARS-CoV-2. However, treatment of airway cultures with the immune molecules type I or type III interferon (IFN) was able to inhibit SARS-CoV-2 infection. Thus, our model system identified type I or type III IFN as potential antiviral treatments for COVID-19 patients.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Células Epiteliais/imunologia , Interferon Tipo I/imunologia , Interferons/imunologia , Pneumonia Viral/imunologia , Animais , Betacoronavirus/fisiologia , Brônquios/citologia , Brônquios/imunologia , Brônquios/virologia , COVID-19 , Linhagem Celular , Células Cultivadas , Quimiocinas/imunologia , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Citocinas/imunologia , Cães , Células Epiteliais/virologia , Humanos , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Células Vero , Replicação Viral , Interferon lambda
9.
AIDS Res Hum Retroviruses ; 36(9): 771-774, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32611248

RESUMO

Among transgender women (TGW), the effects of feminizing hormone therapy use on rectal mucosal (RM) HIV transmission are largely unknown. In this small pilot study, we compared the RM transcriptome in TGW utilizing feminizing hormone therapy with a group of cisgender men who have sex with men (MSM) engaging in condomless receptive anal intercourse (AI) and to a group of cisgender men who had never engaged in AI. There were 498 differentially expressed genes (DEGs) in TGW compared with men who had never engaged in AI, and 154 DEGs compared with the MSM. Among TGW, a unique RM transcriptome was identified that implicated pathways critical for mucosal immune responses, including upregulation of genes that mediate immune cell activation and the production of cytokines and other immune signaling molecules. Furthermore, gene set enrichment analyses identified immune signatures that implicated enrichment of proinflammatory immunological pathways in TGW, specifically involving interferon-α, interleukin-6, and tumor necrosis factor-α signaling, whereas metabolic pathways were shown to be enriched among the cisgender male groups. These findings suggest that TGW have a distinct RM immune environment influenced by the use of feminizing hormones, and consequently, there is an urgent need for further investigation into the immunological effects of gender-affirming hormone therapy and its potential impact on HIV mucosal transmission risk for transgender individuals.


Assuntos
Infecções por HIV , Minorias Sexuais e de Gênero , Pessoas Transgênero , Feminino , Infecções por HIV/tratamento farmacológico , Homossexualidade Masculina , Hormônios , Humanos , Masculino , Projetos Piloto , Transcriptoma
10.
Artigo em Inglês | MEDLINE | ID: mdl-32411625

RESUMO

Natural killer (NK) cells are crucial regulators of antiviral and anti-tumor immune responses. Although in humans some NK cell transcriptional programs are relatively well-established, NK cell transcriptional networks in non-human primates (NHP) remain poorly delineated. Here we performed RNA-Seq experiments using purified NK cells from experimentally naïve rhesus macaques, providing the first transcriptional characterization of pure NK cells in any NHP species. This novel NK cell transcriptomic signature (NK RMtsig) overlaps with published human NK signatures, allowing us to identify new key signaling and transcription factor networks underlying NK cell function. Finally, we show that applying NK RMtsig to an unrelated rhesus macaque cohort infected with SIVmac251 or ZIKV can sensitively detect NK cell repertoire perturbations, thus confirming applicability of this approach. In sum, we propose this NHP NK cell signature will serve as a useful resource for future studies involving infection, disease or treatment modalities in NHP.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Células Matadoras Naturais , Macaca mulatta , Transcriptoma
11.
Clin Infect Dis ; 71(7): e76-e87, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31675420

RESUMO

BACKGROUND: Adolescents in sub-Saharan Africa are at risk for human immunodeficiency virus (HIV) infection and unintended pregnancies. Observational studies suggest that injectable hormonal contraceptives (HCs) increase the HIV risk, although their effects on genital inflammation, particularly HIV-susceptible T-helper 17 (Th17) cells, are unknown. In a randomized crossover study, the effect of injectable norethisterone oenanthate (NET-EN), combined contraceptive vaginal rings (CCVR; NuvaRing), and combined oral contraceptive pills (COCPs) on cervical Th17 cells and cytokines were compared. METHODS: Adolescents (n = 130; 15-19 years) were randomly assigned 1:1:1 to NET-EN, CCVR, or COCPs for 16 weeks, then subsequently crossed over to another HC for 16 weeks. Estrogen, follicular stimulating hormone (FSH), and luteinizing hormone (LH) levels were measured. Chemokine receptor 5 (CCR5), human leukocyte antigen (HLA) DR isotope, and cluster of differentiation 38 (CD38) expression by cervical cytobrush-derived CD4+ T cells was assessed by fluorescence-activated cell sorting. Th17 cells were defined as CCR6+ and CCR10-. Cervicovaginal Th17-related cytokines were measured by Luminex. RESULTS: CCVR use for the first 16 weeks was associated with reduced Th17 frequencies and lower FSH and LH concentrations, as compared to NET-EN and COCPs, with FSH concentrations and Th17 frequencies correlating significantly. However, Th17-related cytokine concentrations (interleukin [IL]-21, IL-1ß, tumor necrosis factor-α, interferon-γ) and CCR5, HLA-DR, CD38, and Th17 frequencies were significantly higher in CCVR than NET-EN and COCP. At crossover, CCVR users changing to COCPs or NET-EN did not resolve activation or cytokines, although switching from COCP to CCVRs increased cytokine concentrations. CONCLUSIONS: CCVR use altered endogenous hormone levels and associated cervical Th17 cell frequencies to a greater extent than use of NET-EN or COCPs, although Th17 cells were more activated and Th17-related cytokine concentrations were elevated. While CCVRs may impact the HIV risk by regulating Th17 numbers, increased activation and inflammation may balance any risk gains.


Assuntos
Dispositivos Anticoncepcionais Femininos , Anticoncepcionais Orais Combinados , Adolescente , África Subsaariana , Estudos Cross-Over , Feminino , Humanos , Noretindrona/análogos & derivados , Fenótipo , Gravidez
12.
Epigenetics Chromatin ; 12(1): 67, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722751

RESUMO

BACKGROUND: Huntington's Disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion, resulting in a mutant huntingtin protein. While it is now clear that astrocytes are affected by HD and significantly contribute to neuronal dysfunction and pathogenesis, the alterations in the transcriptional and epigenetic profiles in HD astrocytes have yet to be characterized. Here, we examine global transcription and chromatin accessibility dynamics during in vitro astrocyte differentiation in a transgenic non-human primate model of HD. RESULTS: We found global changes in accessibility and transcription across different stages of HD pluripotent stem cell differentiation, with distinct trends first observed in neural progenitor cells (NPCs), once cells have committed to a neural lineage. Transcription of p53 signaling and cell cycle pathway genes was highly impacted during differentiation, with depletion in HD NPCs and upregulation in HD astrocytes. E2F target genes also displayed this inverse expression pattern, and strong associations between E2F target gene expression and accessibility at nearby putative enhancers were observed. CONCLUSIONS: The results suggest that chromatin accessibility and transcription are altered throughout in vitro HD astrocyte differentiation and provide evidence that E2F dysregulation contributes to aberrant cell-cycle re-entry and apoptosis throughout the progression from NPCs to astrocytes.


Assuntos
Astrócitos/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Doença de Huntington/patologia , Células-Tronco Pluripotentes/metabolismo , Animais , Astrócitos/citologia , Montagem e Desmontagem da Cromatina , Modelos Animais de Doenças , Fatores de Transcrição E2F/metabolismo , Ontologia Genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Macaca mulatta , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/citologia , Transdução de Sinais , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Cell Rep ; 29(7): 1756-1766.e8, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722194

RESUMO

The first immunization in a protein prime-boost vaccination is likely to be critical for how the immune response unfolds. Using fine needle aspirates (FNAs) of draining lymph nodes (LNs), we tracked the kinetics of the primary immune response in rhesus monkeys immunized intramuscularly (IM) or subcutaneously (s.c.) with an eOD-GT8 60-mer nanoparticle immunogen to facilitate clinical trial design. Significant numbers of germinal center B (BGC) cells and antigen-specific CD4 T cells were detectable in the draining LN as early as 7 days post-immunization and peaked near day 21. Strikingly, s.c. immunization results in 10-fold larger antigen-specific BGC cell responses compared to IM immunization. Lymphatic drainage studies revealed that s.c. immunization resulted in faster and more consistent axillary LN drainage than IM immunization. These data indicate robust antigen-specific germinal center responses can occur rapidly to a single immunization with a nanoparticle immunogen and vaccine drainage substantially impacts immune responses in local LNs.


Assuntos
Formação de Anticorpos , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Centro Germinativo/imunologia , Imunização , Nanopartículas , Vacinas/farmacologia , Animais , Linfócitos B/patologia , Biópsia por Agulha Fina , Linfócitos T CD4-Positivos/patologia , Centro Germinativo/patologia , Humanos , Macaca mulatta , Masculino , Vacinas/imunologia
14.
Nat Commun ; 10(1): 5101, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704931

RESUMO

Natural hosts of simian immunodeficiency virus (SIV) avoid AIDS despite lifelong infection. Here, we examined how this outcome is achieved by comparing a natural SIV host, African green monkey (AGM) to an AIDS susceptible species, rhesus macaque (RM). To asses gene expression profiles from acutely SIV infected AGMs and RMs, we developed a systems biology approach termed Conserved Gene Signature Analysis (CGSA), which compared RNA sequencing data from rectal AGM and RM tissues to various other species. We found that AGMs rapidly activate, and then maintain, evolutionarily conserved regenerative wound healing mechanisms in mucosal tissue. The wound healing protein fibronectin shows distinct tissue distribution and abundance kinetics in AGMs. Furthermore, AGM monocytes exhibit an embryonic development and repair/regeneration signature featuring TGF-ß and concomitant reduced expression of inflammatory genes compared to RMs. This regenerative wound healing process likely preserves mucosal integrity and prevents inflammatory insults that underlie immune exhaustion in RMs.


Assuntos
Fibronectinas/imunologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Fator de Crescimento Transformador beta/imunologia , Cicatrização/imunologia , Animais , Chlorocebus aethiops/genética , Chlorocebus aethiops/imunologia , Progressão da Doença , Fibronectinas/metabolismo , Mucosa Intestinal/metabolismo , Macaca mulatta/genética , Macaca mulatta/imunologia , Macrófagos/metabolismo , Reto/imunologia , Reto/metabolismo , Vírus da Imunodeficiência Símia , Biologia de Sistemas , Transcriptoma , Fator de Crescimento Transformador beta/genética , Cicatrização/genética
15.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511390

RESUMO

Breast cancer is the second leading cause of cancer-related deaths in women in the United States. Triple-negative breast cancer constitutes a subset of breast cancer that is associated with higher rates of relapse, decreased survival, and limited therapeutic options for patients afflicted with this type of breast cancer. Mammalian orthoreovirus (reovirus) selectively infects and kills transformed cells, and a serotype 3 reovirus is in clinical trials to assess its efficacy as an oncolytic agent against several cancers. It is unclear if reovirus serotypes differentially infect and kill triple-negative breast cancer cells and if reovirus-induced cytotoxicity of breast cancer cells can be enhanced by modulating the activity of host molecules and pathways. Here, we generated reassortant reoviruses by forward genetics with enhanced infective and cytotoxic properties in triple-negative breast cancer cells. From a high-throughput screen of small-molecule inhibitors, we identified topoisomerase inhibitors as a class of drugs that enhance reovirus infectivity and cytotoxicity of triple-negative breast cancer cells. Treatment of triple-negative breast cancer cells with topoisomerase inhibitors activates DNA damage response pathways, and reovirus infection induces robust production of type III, but not type I, interferon (IFN). Although type I and type III IFNs can activate STAT1 and STAT2, triple-negative breast cancer cellular proliferation is only negatively affected by type I IFN. Together, these data show that reassortant viruses with a novel genetic composition generated by forward genetics in combination with topoisomerase inhibitors more efficiently infect and kill triple-negative breast cancer cells.IMPORTANCE Patients afflicted by triple-negative breast cancer have decreased survival and limited therapeutic options. Reovirus infection results in cell death of a variety of cancers, but it is unknown if different reovirus types lead to triple-negative breast cancer cell death. In this study, we generated two novel reoviruses that more efficiently infect and kill triple-negative breast cancer cells. We show that infection in the presence of DNA-damaging agents enhances infection and triple-negative breast cancer cell killing by reovirus. These data suggest that a combination of a genetically engineered oncolytic reovirus and topoisomerase inhibitors may provide a potent therapeutic option for patients afflicted with triple-negative breast cancer.


Assuntos
Apoptose , Neoplasias da Mama/terapia , Terapia Viral Oncolítica/métodos , Reoviridae/fisiologia , Inibidores da Topoisomerase/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/imunologia , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Dano ao DNA , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Imunidade Inata , Interferons/metabolismo , Cinética , Vírus Oncolíticos/fisiologia , Reoviridae/genética , Infecções por Reoviridae/virologia , Inibidores da Topoisomerase/uso terapêutico , Replicação Viral , Interferon lambda
16.
Front Immunol ; 9: 780, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29725327

RESUMO

Combined antiretroviral therapies (cARTs) efficiently control HIV replication leading to undetectable viremia and drastic increases in lifespan of people living with HIV. However, cART does not cure HIV infection as virus persists in cellular and anatomical reservoirs, from which the virus generally rebounds soon after cART cessation. One major anatomical reservoir are lymph node (LN) follicles, where HIV persists through replication in follicular helper T cells and is also trapped by follicular dendritic cells. Natural hosts of SIV, such as African green monkeys and sooty mangabeys, generally do not progress to disease although displaying persistently high viremia. Strikingly, these hosts mount a strong control of viral replication in LN follicles shortly after peak viremia that lasts throughout infection. Herein, we discuss the potential interplay between viral control in LNs and the resolution of inflammation, which is characteristic for natural hosts. We furthermore detail the differences that exist between non-pathogenic SIV infection in natural hosts and pathogenic HIV/SIV infection in humans and macaques regarding virus target cells and replication dynamics in LNs. Several mechanisms have been proposed to be implicated in the strong control of viral replication in natural host's LNs, such as NK cell-mediated control, that will be reviewed here, together with lessons and limitations of in vivo cell depletion studies that have been performed in natural hosts. Finally, we discuss the impact that these insights on viral dynamics and host responses in LNs of natural hosts have for the development of strategies toward HIV cure.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV/fisiologia , Linfonodos/virologia , Animais , Interações Hospedeiro-Parasita/imunologia , Humanos , Linfonodos/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral/fisiologia
17.
Nat Commun ; 9(1): 1371, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636452

RESUMO

HIV-1 causes chronic inflammation and AIDS in humans, whereas related simian immunodeficiency viruses (SIVs) replicate efficiently in their natural hosts without causing disease. It is currently unknown to what extent virus-specific properties are responsible for these different clinical outcomes. Here, we incorporate two putative HIV-1 virulence determinants, i.e., a Vpu protein that antagonizes tetherin and blocks NF-κB activation and a Nef protein that fails to suppress T cell activation via downmodulation of CD3, into a non-pathogenic SIVagm strain and test their impact on viral replication and pathogenicity in African green monkeys. Despite sustained high-level viremia over more than 4 years, moderately increased immune activation and transcriptional signatures of inflammation, the HIV-1-like SIVagm does not cause immunodeficiency or any other disease. These data indicate that species-specific host factors rather than intrinsic viral virulence factors determine the pathogenicity of primate lentiviruses.


Assuntos
HIV-1/patogenicidade , Especificidade de Hospedeiro , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Lentivirus de Primatas/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/patogenicidade , Proteínas Virais Reguladoras e Acessórias/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Sequência de Aminoácidos , Animais , Antígeno 2 do Estroma da Médula Óssea/genética , Antígeno 2 do Estroma da Médula Óssea/imunologia , Complexo CD3/genética , Complexo CD3/imunologia , Chlorocebus aethiops , Feminino , Regulação da Expressão Gênica , HIV-1/crescimento & desenvolvimento , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Lentivirus de Primatas/patogenicidade , Ativação Linfocitária , NF-kappa B/genética , NF-kappa B/imunologia , Alinhamento de Sequência , Transdução de Sinais , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Transcrição Gênica , Carga Viral , Proteínas Virais Reguladoras e Acessórias/genética , Virulência , Replicação Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
18.
Genome Med ; 10(1): 20, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558968

RESUMO

B cells play a critical role in the immune response by producing antibodies, which display remarkable diversity. Here we describe a bioinformatic pipeline, BALDR (BCR Assignment of Lineage using De novo Reconstruction) that accurately reconstructs the paired heavy and light chain immunoglobulin gene sequences from Illumina single-cell RNA-seq data. BALDR was accurate for clonotype identification in human and rhesus macaque influenza vaccine and simian immunodeficiency virus vaccine induced vaccine-induced plasmablasts and naïve and antigen-specific memory B cells. BALDR enables matching of clonotype identity with single-cell transcriptional information in B cell lineages and will have broad application in the fields of vaccines, human immunodeficiency virus broadly neutralizing antibody development, and cancer.BALDR is available at https://github.com/BosingerLab/BALDR .


Assuntos
Biologia Computacional/métodos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Análise de Sequência de RNA , Análise de Célula Única , Software , Animais , Antígenos CD19/metabolismo , Sequência de Bases , Células Clonais , Humanos , Macaca mulatta , Plasmócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Nature ; 553(7686): 77-81, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29300007

RESUMO

In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS.


Assuntos
Síndrome da Imunodeficiência Adquirida/genética , Cercocebus atys/genética , Cercocebus atys/virologia , Predisposição Genética para Doença , Genoma/genética , Especificidade de Hospedeiro/genética , Vírus da Imunodeficiência Símia , Síndrome da Imunodeficiência Adquirida/virologia , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Cercocebus atys/imunologia , Éxons/genética , Feminino , Mutação da Fase de Leitura/genética , Variação Genética , Genômica , HIV/patogenicidade , Humanos , Macaca/virologia , Deleção de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Especificidade da Espécie , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Transcriptoma/genética , Sequenciamento Completo do Genoma
20.
Oncotarget ; 8(54): 91914-91927, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29190885

RESUMO

The catabolism of tryptophan (Trp) by indoleamine 2,3-dioxygenase (IDO) is a key step in tolerance effected by a variety of cell types, including mesenchymal stromal cells (MSCs). Trp catabolism generates molecules known as kynurenines, whose tolerance mechanisms involve activation of the Aryl Hydrocarbon Receptor (AHR). A synthetic analog of Trp, 1-methyl tryptophan (1MT), is a selective inhibitor of IDO enzymatic activity being utilized in cancer immunotherapy trials. We hypothesized 1MT might activate AHR independently of its effects on IDO. We demonstrate MSCs express AHR protein, and that in vitro treatment with 1MT causes AHR nucleotranslocation. Upon analyzing mRNA, we observed transcriptional upregulation of cytochrome p450 1a1 and 1b1 by 1MT racemic mixture (R-MT), consistent with AHR-activation. RNA-sequencing identified Nrf2, MAPK12 and IL-1a as downstream targets of 1MT. We demonstrate 1a1 and 1b1 activation by 1MT in IDO+ MSC following interferon-γ (IFN-γ) activation, suggesting AHR signaling is uncoupled from IDO catalytic function. Such a mechanism of action for 1MT may extend its usage to a wider range of patients, irrespective of tumor IDO expression. These observations support a novel paradigm by which AHR-activating compounds like 1MT can be used in cancer immunotherapy to stimulate a pro-inflammatory response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA