Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Ann N Y Acad Sci ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320132

RESUMO

Founded in 1947 as the Institute of Industrial Medicine, the Nelson Institute and Department of Environmental Medicine at New York University (NYU) Grossman School of Medicine (NYUGSOM) was supported by a National Institute of Environmental Health Science (NIEHS) Center Grant for over 56 years. Nelson Institute researchers generated 75 years of impactful research in environmental and occupational health, radiation effects, toxicology, and cancer. Environmental health research is continuing at NYUGSOM in its departments of medicine and population health. The objective of this historical commentary is to highlight the major achievements of the Nelson Institute and the department in the context of its history at facilities in Sterling Forest, Tuxedo, NY and Manhattan, NY. Aspects of our discussion include leadership, physical facilities, and research in many areas, including air pollution, health effects of environmental radiation exposures, inhalation toxicology methodology, carcinogenesis by chemicals, metals, and hormones, cancer chemoprevention, human microbiome, ecotoxicology, epidemiology, biostatistics, and community health concerns. The research of the institute and department benefited from unique facilities, strong leadership focused on team-based science, and outstanding investigators, students, and staff. A major lasting contribution has been the training of hundreds of graduate students and postdoctoral fellows, many of whom have been and are training the next generation of environmental and occupational health researchers at various institutions.

3.
Cells ; 12(24)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38132150

RESUMO

Leiomyosarcoma (LMS) has been challenging to diagnose because of limitations in clinical and radiographic predictors, as well as the lack of reliable serum or urinary biomarkers. Most uterine masses consist of benign leiomyoma (LM). However, it is currently a significant challenge in gynecology practice to differentiate LMS from LM. This inability poses grave consequences for patients, leading to a high number of unnecessary hysterectomies, infertility, and other major morbidities and possible mortalities. This study aimed to evaluate the use of Survivin-Sodium iodide symporter (Ad-Sur-NIS) as a reporter gene biomarker to differentiate malignant LMS from benign LM by using an F18-NaBF4 PET/CT scan. The PET/CT scan images showed a significantly increased radiotracer uptake and a decreased radiotracer decay attributable to the higher abundance of Ad-Sur-NIS in the LMS tumors compared to LM (p < 0.05). An excellent safety profile was observed, with no pathological or metabolic differences detected in Ad-Sur-NIS-treated animal versus the vehicle control. Ad-Sur-NIS as a PET scan reporter is a promising imaging biomarker that can differentiate uterine LMS from LM using F18-NaBF4 as a radiotracer. As a new diagnostic method, the F18 NaBF4 PET/CT scan can provide a much-needed tool in clinical practices to effectively triage women with suspicious uterine masses and avoid unnecessary invasive interventions.


Assuntos
Genes Reporter , Leiomioma , Leiomiossarcoma , Neoplasias Uterinas , Animais , Feminino , Humanos , Biomarcadores , Leiomioma/diagnóstico por imagem , Leiomiossarcoma/diagnóstico por imagem , Leiomiossarcoma/genética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Survivina , Neoplasias Uterinas/diagnóstico por imagem , Neoplasias Uterinas/genética , Simportadores
4.
Cancers (Basel) ; 15(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894421

RESUMO

The consumption of the non-steroidal anti-inflammatory drug (NSAID) aspirin is associated with a significant reduction in the risk of developing TMPRSS2-ERG (fusion)-positive prostate cancer (PCa) compared to fusion-negative PCa in population-based case-control studies; however, no extensive preclinical studies have been conducted to investigate and confirm these protective benefits. Thus, the focus of this study was to determine the potential usefulness of aspirin and another NSAID, naproxen, in PCa prevention, employing preclinical models of both TMPRSS2-ERG (fusion)-driven (with conditional deletion of Pten) and non-TMPRSS2-ERG-driven (Hi-Myc+/- mice) PCa. Male mice (n = 25 mice/group) were fed aspirin- (700 and 1400 ppm) and naproxen- (200 and 400 ppm) supplemented diets from (a) 6 weeks until 32 weeks of Hi-Myc+/- mice age; and (b) 1 week until 20 weeks post-Cre induction in the fusion model. In all NSAID-fed groups, compared to no-drug controls, there was a significant decrease in higher-grade adenocarcinoma incidence in the TMPRSS2-ERG (fusion)-driven PCa model. Notably, there were no moderately differentiated (MD) adenocarcinomas in the dorsolateral prostate of naproxen groups, and its incidence also decreased by ~79-91% in the aspirin cohorts. In contrast, NSAIDs showed little protective effect against prostate tumorigenesis in Hi-Myc+/- mice, suggesting that NSAIDs exert a specific protective effect against TMPRSS2-ERG (fusion)-driven PCa.

5.
Phytochemistry ; 214: 113789, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482264

RESUMO

In botanical extracts, highly abundant constituents can mask or dilute the effects of other, and often, more relevant biologically active compounds. To facilitate the rational chemical and biological assessment of these natural products with wide usage in human health, we introduced the DESIGNER approach of Depleting and Enriching Selective Ingredients to Generate Normalized Extract Resources. The present study applied this concept to clinical Red Clover Extract (RCE) and combined phytochemical and biological methodology to help rationalize the utility of RCE supplements for symptom management in postmenopausal women. Previous work has demonstrated that RCE reduces estrogen detoxification pathways in breast cancer cells (MCF-7) and, thus, may serve to negatively affect estrogen metabolism-induced chemical carcinogenesis. Clinical RCE contains ca. 30% of biochanin A and formononetin, which potentially mask activities of less abundant compounds. These two isoflavonoids are aryl hydrocarbon receptor (AhR) agonists that activate P450 1A1, responsible for estrogen detoxification, and P450 1B1, producing genotoxic estrogen metabolites in female breast cells. Clinical RCE also contains the potent phytoestrogen, genistein, that downregulates P450 1A1, thereby reducing estrogen detoxification. To identify less abundant bioactive constituents, countercurrent separation (CCS) of a clinical RCE yielded selective lipophilic to hydrophilic metabolites in six enriched DESIGNER fractions (DFs 01-06). Unlike solid-phase chromatography, CCS prevented any potential loss of minor constituents or residual complexity (RC) and enabled the polarity-based enrichment of certain constituents. Systematic analysis of estrogen detoxification pathways (ERα-degradation, AhR activation, CYP1A1/CYP1B1 induction and activity) of the DFs uncovered masked bioactivity of minor/less abundant constituents including irilone. These data will allow the optimization of RCE with respect to estrogen detoxification properties. The DFs revealed distinct biological activities between less abundant bioactives. The present results can inspire future carefully designed extracts with phytochemical profiles that are optimized to increase in estrogen detoxification pathways and, thereby, promote resilience in women with high-risk for breast cancer. The DESIGNER approach helps to establish links between complex chemical makeup, botanical safety and possible efficacy parameters, yields candidate DFs for (pre)clinical studies, and reveals the contribution of minor phytoconstituents to the overall safety and bioactivity of botanicals, such as resilience promoting activities relevant to women's health.


Assuntos
Neoplasias da Mama , Isoflavonas , Trifolium , Feminino , Humanos , Trifolium/química , Trifolium/metabolismo , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Estrogênios , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neoplasias da Mama/tratamento farmacológico
6.
Prostate ; 83(9): 823-830, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36938936

RESUMO

BACKGROUND: Androgens are generally thought to cause prostate cancer, but the data from animal studies suggest that they must be aromatized to estrogen and act in concert with genotoxic estrogen metabolites. The objective of this study was to determine whether treatment with testosterone (T) combined with a nonestrogenic estrogen metabolite and a nongenotoxic estrogenic compound would all be necessary and sufficient for the induction of a high incidence of prostate cancer in the susceptible NBL rat strain. METHODS: NBL rats were treated with low-dose testosterone via slow-release Silastic implants and with the marginally estrogenic genotoxic catechol estrogen 4-hydroxyestradiol (4OH-E2) and the nongenotoxic estrogen 2-fluoroestradiol (2F-E2) and in one experiment the aromatase inhibitor letrozole via custom-made slow-release pellets. Animals were euthanized 52 weeks after implantation and their pituitaries and prostate complexes weighed and fixed in formalin. Hematoxylin and eosin (H&E)-stained step sections were prepared and examined microscopically for proliferative lesions. RESULTS: Animals treated with 2F-E2, with or without the other compounds, had enlarged pituitaries demonstrating its estrogenicity. Animals treated with T, with or without the other compounds, had enlarged prostates consistent with its androgenicity. Rats treated with T plus 2F-E2 and 4OH-E2 developed a high incidence of prostatic cancer (89%), while, surprisingly, rats treated with T plus only 2F-E2 also had a high incidence of prostate cancer (95%) contradicting our initial hypothesis. To test whether the formation of E2 from T by aromatase could lead to estrogen genotoxicity and prostate carcinogenesis we then rats treated with T and 2F-E2 also with letrozole and found that it reduced prostate cancer incidence by about 50%. CONCLUSIONS: These findings indicate that long-term treatment with a nongenotoxic estrogen (2F-E2) and T as well as uninhibited prostatic aromatase activity generating genotoxic E2 are all required for induction of a high incidence of prostatic adenocarcinomas in NBL rats. These and previous data indicate that androgen receptor-mediated action, estrogen receptor mediation, and estrogen genotoxicity are all required and sufficient for hormonal carcinogenesis in the NBL rat prostate. Interference with the estrogen genotoxicity is a potential approach to prostate cancer chemoprevention.


Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Humanos , Ratos , Animais , Androgênios/metabolismo , Próstata/patologia , Estradiol/metabolismo , Aromatase/genética , Aromatase/metabolismo , Letrozol/toxicidade , Letrozol/metabolismo , Estrogênios/farmacologia , Neoplasias da Próstata/patologia , Testosterona/farmacologia , Testosterona/metabolismo , Carcinogênese/patologia , Dano ao DNA
7.
Biomed Pharmacother ; 162: 114607, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001185

RESUMO

Aggressive estrogen receptor (ER) positive breast cancer is frequently tamoxifen-resistant; alternative endocrine approaches exist for therapy, but not for prevention, particularly in premenopausal women. We examined the efficacy of the selective ER modulator (Z-endoxifen) as monotherapy and in combination with the selective progesterone receptor modulators (onapristone and ulipristal acetate) in the tamoxifen-insensitive C3(1)/SV40TAg mouse mammary tumorigenesis model. Unlike tamoxifen at human equivalent dose (HED) 101 mg/day, endoxifen at HED 24 mg/day significantly increased latency and reduced tumor growth relative to untreated controls. Ulipristal acetate (UPA) at HED 81 mg/day also significantly increased latency however failed to inhibit tumor growth, while onapristone (HED 98 mg/day) had no tumor prevention efficacy in this model. Addition of UPA to endoxifen did not enhance preventive efficacy over endoxifen alone. The expression of genes associated with cell cycle, cell proliferation and extracellular matrix remodeling was similarly repressed by endoxifen and UPA however only endoxifen significantly downregulated prominent genes associated with poor prognosis (Col11a1, Il17b, Pdgfa, Tnfrsf11a). Our results indicate that endoxifen can prevent breast cancers, even when tamoxifen-resistant, through its role in favorable tissue remodeling and immunomodulation.


Assuntos
Neoplasias da Mama , Tamoxifeno , Feminino , Camundongos , Humanos , Animais , Linhagem Celular Tumoral , Tamoxifeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Microambiente Tumoral
8.
Ann Glob Health ; 89(1): 14, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843668

RESUMO

Prostate cancer is a major male malignancy in many sub-Saharan countries in Africa. Because of resource limitations, screening, early detection, diagnosis, and curative treatments are not available for many men on the subcontinent, and there are even barriers to the treatment of advanced-stage metastatic prostate cancer. We are making the case for new approaches to the detection, diagnosis, and treatment of this malignancy in sub-Saharan Africa and other low-resource regions-approaches that differ from the ones available and used in high-income countries. The development of one-step dipstick-type detection assays of serum prostate-specific antigen (PSA) offers an approach to prostate cancer detection, treatment and monitoring that circumvents issues related to laboratory quality control and is also low-cost. Curative-intent treatments of early-stage prostate cancer are often unavailable in low-resource contexts, and most prostate cancers are not detected in Africa until they are at an advanced stage. Hence, androgen deprivation treatments, including orchiectomy and older low-cost drugs, offer feasible and affordable approaches to prolong survival and sustain a reasonable quality of life. However, clinical trials are needed to identify which of these androgen deprivation treatments are most efficacious and best tolerated to make progress in providing medical care for men with prostate cancer in sub-Saharan Africa and other low- and lower-middle-income areas around the world.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Antagonistas de Androgênios/uso terapêutico , Androgênios/uso terapêutico , Qualidade de Vida , África Subsaariana
10.
Toxicology ; 484: 153394, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521576

RESUMO

Perinatal and neonatal exposure to bisphenol A (BPA) has been linked to enhancement of prostate carcinogenesis in rats induced by combined treatment with estradiol and testosterone, but human data are lacking. This study aimed to determine the effects of perinatal BPA exposure on induction of prostate cancer in rats by sequential treatment with N-methyl-N-nitrosamine (MNU) and continuous low dose administration of testosterone. Pregnant Sprague Dawley rats were exposed to BPA administered by subcutaneous Alzet minipumps at doses of 2.5 or 25 µg/kg body weight/day from gestational day 9 until postnatal day 28 when pups were weaned providing exposure of offspring in utero and via the mother's milk. At 10-12 weeks of age, one male offspring per litter was treated with an intraperitoneal injection of MNU after hormonal stimulation of prostatic cell proliferation followed two weeks later by subcutaneous insertion of Silastic implants containing testosterone until the termination of the study 57-58 weeks after MNU injection. The perinatal BPA exposure did not significantly affect the incidence of prostate carcinomas which was slightly lower in exposed rats (33-23 %) than in control animals (40 %). Carcinomas in all accessory sex glands combined were also insignificantly less frequent in exposed (46-48 %) than in control rats (60 %). The incidence of malignant tumors at any site in the body was significantly lower in exposed rats (81-65 %) than in controls (93 %). In conclusion, perinatal BPA exposure did not significantly modify prostate cancer induction by MNU plus testosterone in rats, unlike the enhancement of prostate carcinogenesis induced by treatments involving estradiol administration. Which of the two models of prostate carcinogenesis is more relevant for the human situation is unclear at present.


Assuntos
Carcinoma , Neoplasias da Próstata , Gravidez , Humanos , Ratos , Masculino , Animais , Recém-Nascido , Testosterona , Ratos Sprague-Dawley , Metilnitrosoureia/toxicidade , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/patologia , Compostos Benzidrílicos/toxicidade , Estradiol/toxicidade , Carcinogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA