RESUMO
BACKGROUND: Atherosclerotic plaques form unevenly due to disturbed blood flow, causing localized endothelial cell (EC) dysfunction. Obesity exacerbates this process, but the underlying molecular mechanisms are unclear. The transcription factor EPAS1 (HIF2A) has regulatory roles in endothelium, but its involvement in atherosclerosis remains unexplored. This study investigates the potential interplay between EPAS1, obesity, and atherosclerosis. METHODS: Responses to shear stress were analyzed using cultured porcine aortic EC exposed to flow in vitro coupled with metabolic and molecular analyses and by en face immunostaining of murine aortic EC exposed to disturbed flow in vivo. Obesity and dyslipidemia were induced in mice via exposure to a high-fat diet or through Leptin gene deletion. The role of Epas1 in atherosclerosis was evaluated by inducible endothelial Epas1 deletion, followed by hypercholesterolemia induction (adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9]; high-fat diet). RESULTS: En face staining revealed EPAS1 enrichment at sites of disturbed blood flow that are prone to atherosclerosis initiation. Obese mice exhibited substantial reduction in endothelial EPAS1 expression. Sulforaphane, a compound with known atheroprotective effects, restored EPAS1 expression and concurrently reduced plasma triglyceride levels in obese mice. Consistently, triglyceride derivatives (free fatty acids) suppressed EPAS1 in cultured EC by upregulating the negative regulator PHD2. Clinical observations revealed that reduced serum EPAS1 correlated with increased endothelial PHD2 and PHD3 in obese individuals. Functionally, endothelial EPAS1 deletion increased lesion formation in hypercholesterolemic mice, indicating an atheroprotective function. Mechanistic insights revealed that EPAS1 protects arteries by maintaining endothelial proliferation by positively regulating the expression of the fatty acid-handling molecules CD36 (cluster of differentiation 36) and LIPG (endothelial type lipase G) to increase fatty acid beta-oxidation. CONCLUSIONS: Endothelial EPAS1 attenuates atherosclerosis at sites of disturbed flow by maintaining EC proliferation via fatty acid uptake and metabolism. This endothelial repair pathway is inhibited in obesity, suggesting a novel triglyceride-PHD2 modulation pathway suppressing EPAS1 expression. These findings have implications for therapeutic strategies addressing vascular dysfunction in obesity.
Assuntos
Aterosclerose , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células Endoteliais , Ácidos Graxos , Obesidade , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Obesidade/metabolismo , Obesidade/genética , Células Cultivadas , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL , Suínos , Masculino , Dieta Hiperlipídica , Endotélio Vascular/metabolismo , Endotélio Vascular/patologiaRESUMO
RATIONALE: High-resolution mass spectrometry (HRMS) has been demonstrated to be an alternative platform for quantitative analyses, identifying unknown compounds and gathering information for the elucidation of chemical structures. This work describes a method to detect 13 esters of testosterone (T) and 5 biomarkers in 0.1 mL of human serum using gas chromatography (GC) coupled to HRMS. METHODS: Analytes were extracted from serum after deproteinization and liquid-liquid extraction. The trimethylsilyl derivatives were analyzed using a gas chromatograph coupled to HRMS at low electron energy to minimize molecule fragmentation. The acquisition in profiling full-scan mode was applied with a resolving power of 30 000 at m/z 400. Linearity, lower limit of quantitation, and measurement uncertainty were assessed. Precision and accuracy were assessed at 0.5 and 2 ng/mL, respectively. Mass accuracy (MA) and mass extraction window (MEW) were also evaluated. RESULTS: T esters showed a linear response between 0.25 and 10 ng/mL (except for undecanoate, enanthate, and propionate that showed lineal responses between 0.5 and 10 ng/mL and isocaproate between 2 and 10 ng/mL); detection limits remained between 0.1 and 0.5 ng/mL and accuracy between 81% and 119%. The MA (MEW = 10 ppm) was maintained between -2.4 and 4.8 ppm. The biomarkers (T, androstenedione, dehydroepiandrosterone [DHEA], estradiol, and 17-OH-progesterone) showed a linear response within the evaluated range; quantification limits remained between 0.1 and 0.5 ng/mL (except for DHEA), the accuracy between 88% and 99%, and precision between 3.5% and 10.8%. Measurement uncertainties were found between 5.6% and 17.2%. MA (MEW = 3 ppm) was maintained between -0.47 and 0.12 ppm. CONCLUSIONS: The method to detect T esters and five endogenous biomarkers in serum using GC coupled to HRMS showed linear responses up to 10 ng/mL with adequate precision, accuracy, and uncertainties. It was possible to distinguish cholesterol from T-isocaproate based on the MEW of 10 ppm, preventing false positives. In addition, this method allows searching for other biomarkers and/or unknown metabolites and other ester forms not included here but at a later stage if necessary.
Assuntos
Ésteres , Testosterona , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Ésteres/análise , Espectrometria de Massas/métodos , DesidroepiandrosteronaRESUMO
BACKGROUND: Nicotine is a psychostimulant drug with purported use in sports environments, though the use of nicotine among athletes has not been studied extensively. OBJECTIVE: The aim of this study was to assess the nicotine positivity rate in 60,802 anti-doping urine samples from 2012 to 2020. METHODS: Urine samples obtained in-competition at different national and international sports events held in Italy during the period 2012-2020 were analysed. All samples were from anonymous athletes that were collected and analysed at the WADA-accredited antidoping laboratory in Rome, Italy. Samples were analysed by gas chromatography coupled with mass spectrometry, with a cut-off concentration for nicotine of > 50 ng/mL. Results were stratified by year, sport and sex. RESULTS: An overall mean of 22.7% of the samples (n = 13,804; males: n = 11,099; females: n = 2705) showed nicotine intake, with male samples also displaying higher positivity rates than female (24.1% vs 18.5%). Sample positivity was higher during 2012-2014 (25-33%) than 2015-2020 (15-20%). Samples from team sports displayed a higher positivity rate than those from individual sports (31.4 vs 14.1%). CONCLUSIONS: The current data demonstrates that one in five samples from a range of 90 sports test positive for nicotine in-competition. There is a lower positivity rate in endurance versus power/strength athletes and higher positivity rate in team versus individual sports, probably accounted for by differences in physiological and psychological demands and the desire for socialisation. WADA, international and national sports federations should consider these findings with concern, proactively investigate this phenomenon and act in order to protect the health and welfare of its athletes.
Assuntos
Estimulantes do Sistema Nervoso Central , Dopagem Esportivo , Esportes , Humanos , Masculino , Feminino , Nicotina , Atletas/psicologia , ItáliaRESUMO
We present a liquid chromatography tandem mass spectrometry method for the simultaneous analysis of 16 endogenous steroids (androgens, estrogens, glucocorticoids and progestogens) in human serum. Samples (250 µl of matrix) were extracted with t-butylmethyl ether prior to LC-MS/MS analysis. The chromatographic separation was achieved on a reversed-phase column using a methanol-water gradient. The HPLC was coupled to a triple quadrupole mass spectrometer equipped with an electrospray ionization source with acquisition in multiple reaction monitoring mode. The method was validated using surrogate matrices and human serum samples. The specificity of the method was confirmed for all of the considered steroids; linearity was also assessed (R2 > 0.99, lack-of-fit test) in the ranges of concentrations investigated. The lower limits of quantification were in the range 10-400 pg/ml depending on the target steroid. Accuracy was in the range 85-115% for all target steroids except for the lower limit of quantitation levels where it was 80-120%. The extraction recovery was always >65%. No significant matrix effects were observed. To test the reliability of the method, the analysis of serum samples collected from 10 healthy subjects (5 M/5F) was performed. The present method can be used to identify the trajectories of deviation from the concentration normality ranges applied to disorders of the gonadal and adrenal axes.
Assuntos
Androgênios , Progestinas , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida/métodos , Estrogênios , Glucocorticoides , Humanos , Reprodutibilidade dos Testes , Esteroides , Espectrometria de Massas em Tandem/métodosRESUMO
Ecdysterone is a phytosteroid widely discussed for its various pharmacological, growth-promoting, and anabolic effects, mediated by the activation of estrogen receptor beta (ERbeta). Performance-enhancement in sports was demonstrated recently, and ecdysterone was consequently included in the Monitoring Program, to detect potential patterns of misuse in sport. Only few studies on the pharmacokinetics of ecdysterone in humans have been reported so far. In this study, post-administration urine samples in twelve volunteers (single dose of 50 mg of ecdysterone) were analyzed using dilute-and-inject liquid-chromatography-tandem mass spectrometry. Identification and quantitation of ecdysterone and of two metabolites, 14-deoxy-ecdysterone and 14-deoxy-poststerone, was achieved. Ecdysterone was the most abundant analyte present in post-administration urine samples, detected for more than 2 days, with a maximum concentration (Cmax) in the 2.8-8.5 h urine (Cmax = 4.4-30.0 µg/mL). The metabolites 14-deoxy-ecdysterone and 14-deoxy-poststerone were detected later, reaching the maximum concentrations at 8.5-39.5 h (Cmax = 0.1-6.0 µg/mL) and 23.3-41.3 h (Cmax = 0.1-1.5 µg/mL), respectively. Sex-specific differences were not observed. Cumulative urinary excretion yielded average values of 18%, 2.3%, and 1.5% for ecdysterone, 14-deoxy-ecdysterone, and 14-deoxy-poststerone, respectively. Ecdysterone and 14-deoxy-ecdysterone were excreted following first-order kinetics with half-lives calculated with three hours, while pharmacokinetics of 14-deoxy-poststerone needs further evaluation.
RESUMO
BACKGROUND: Exercise-associated immune response plays a crucial role in the aging process. The aim of this study is to investigate the effect of sport intensity on cytokine levels, oxidative stress markers and telomere length in aging elite athletes. METHODS: In this study, 80 blood samples from consenting elite athletes were collected for anti-doping analysis at an anti-doping laboratory in Italy (FMSI). Participants were divided into three groups according to their sport intensity: low-intensity skills and power sports (LI, n = 18); moderate-intensity mixed soccer players (MI, n = 31); and high-intensity endurance sports (HI, n = 31). Participants were also divided into two age groups: less than 25 (n = 45) and above 25 years old (n = 35). Serum levels of 10 pro and anti-inflammatory cytokines and two antioxidant enzymes were compared in age and sport intensity groups and telomere lengths were measured in their respective blood samples. RESULTS: Tumor necrosis factor-alpha (TNF-α) was the only cytokine showing significantly higher concentration in older athletes, regardless of sport intensity. Interleukin (IL)-10 increased significantly in HI regardless of age group, whereas IL-6 concentration was higher in the older HI athletes. IL-8 showed a significant interaction with sport intensity in different age groups. Overall, significant positive correlations among levels of IL-6, IL-10, IL-8 and TNF-α were identified. The antioxidant catalase activity was positively correlated with levels of TNF-α. Telomere length increased significantly with sport intensity, especially in the younger group. CONCLUSION: HI had longer telomeres and higher levels of pro- and anti-inflammatory cytokines, suggesting less aging in HI compared to low and moderate counterparts in association with heightened immune response. Investigation of the functional significance of these associations on the health and performance of elite athletes is warranted.
RESUMO
Cytochrome P450s (CYPs) are an essential family of enzymes in the human body. They play a crucial role in metabolism, especially in human steroid biosynthesis. Reactions catalyzed by these enzymes are highly stereo- and regio-specific. Lack or severe malfunctions of CYPs can cause severe diseases and even shorten life. Hence, investigations on metabolic reactions and structural requirements of substrates are crucial to gain further knowledge on the relevance of different enzymes in the human body functions and the origin of diseases. One key enzyme in the biosynthesis of gluco- and mineralocorticoids is CYP21A2, also known as steroid 21-hydroxylase. To investigate the steric and regional requirements of substrates for this enzyme, we performed whole-cell biotransformation assays using a strain of fission yeast Schizosaccharomyces pombe recombinantly expressing CYP21A2. The progestogens progesterone, pregnenolone, and their 17α-hydroxy-derivatives were used as substrates. After incubation, samples were analyzed using gas chromatography coupled to mass spectrometry. For progesterone and 17α-hydroxyprogesterone, their corresponding 21-hydroxylated metabolites 11-deoxycorticosterone and 11-deoxycortisol were detected, while after incubation of pregnenolone and 17α-hydroxypregnenolone, no hydroxylated product was observed. Findings were confirmed with authentic reference material. Molecular docking experiments agree with these results and suggest that interaction between the 3-oxo group and arginine-234 of the enzyme is a strict requirement. The presented results demonstrate once more that the presence of an oxo-group in position 3 of the steroid is indispensable, while a 3-hydroxy group prevents hydroxylation in position C-21 by CYP21A2. This knowledge may be transferred to other CYP21A2 substrates and hence help to gain essential insights into steroid metabolism.
Assuntos
Corticosteroides/metabolismo , Pregnenolona/farmacologia , Esteroide 21-Hidroxilase/metabolismo , 17-alfa-Hidroxipregnenolona/metabolismo , Domínio Catalítico , Sistema Enzimático do Citocromo P-450 , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hidroxilação , Modelos Moleculares , Simulação de Acoplamento Molecular , Pregnenolona/metabolismo , Progesterona/metabolismo , Schizosaccharomyces , Esteroide 17-alfa-Hidroxilase/metabolismo , Esteroides/metabolismo , Especificidade por SubstratoRESUMO
RATIONALE: The metabolism of arimistane (Arim) was first described in 2015, and androst-3,5-diene-7ß-ol-17-one was proposed as the main metabolite excreted in urine. Recently, a more detailed study describing the findings in urine after the administration of Arim has been published. This study corroborated the previously described metabolite but also described several phase I and II metabolites, analyzing trimethylsilylated urinary extracts using accurate mass spectrometry coupled to gas chromatography (GC/qTOF). The present communication is an extension of this late investigation aiming to implement the results of Arim metabolism using either accurate mass spectrometry and/or triple quadrupole tandem mass spectrometry, both coupled to liquid chromatography (LC/qTOF and LC/QqQ). METHODS: The samples used in this study were the same as previously studied using GC/qTOF. One single oral dose of Arim was administered to three volunteers, and samples collected before and up to 10 h after the Arim administration were analyzed. The unconjugated fraction of urine was removed, and the hydrolysis was performed with ß-glucuronidase from Escherichia coli. The extracts were reconstituted in water:acetonitrile before the LC/qTOF and LC/QqQ analysis. RESULTS: The presence of the proposed metabolites studied using GC was verified by accurate mass measurements. Twelve metabolites not found in the blank urine samples were identified by the accurate mass spectra with acceptable errors between -7.5 and 8.1 ppm: 4 reduced metabolites, 4 monohydroxylated metabolites, and 4 with an additional hydroxylation (bis-hydroxylated metabolites). Unlike in the study carried out using GC/qTOF, Arim itself was found in the samples of the three volunteers. CONCLUSIONS: Twelve metabolites were identified, and specific transitions were proposed. Despite the good results, some limitations remain. As for GC/qTOF, the α- or ß configuration of hydroxy groups, as well as the exact position for some unsaturation, cannot be assigned with certainty. Because certified reference materials of these metabolites are not yet available, the molecular structures were hypothesized considering the previous study using GC.
Assuntos
Substâncias para Melhoria do Desempenho/urina , Preparações Farmacêuticas/urina , Cromatografia Líquida de Alta Pressão/métodos , Dopagem Esportivo/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Estrutura Molecular , Substâncias para Melhoria do Desempenho/química , Urina/químicaRESUMO
The detection of 19-norsteroids abuse in doping controls currently relies on the determination of 19-norandrosterone (19-NA) by gas chromatography-tandem mass spectrometry (GC-MS/MS). An additional confirmatory analysis by gas chromatography coupled to isotope ratio mass spectrometry (GC-C-IRMS) is performed on samples showing 19-NA concentrations between 2.5 and 15 ng/ml and not originated from pregnant female athletes or female treated with 19-norethisterone. 19-Noretiocholanolone (19-NE) is typically produced to a lesser extent as a secondary metabolite. The aim of this work was to improve the GC-C-IRMS confirmation procedure for the detection of 19-norsteroids misuse. Both 19-NA and 19-NE were analyzed as target compounds (TCs), whereas androsterone (A), pregnanediol (PD), and pregnanetriol (PT) were selected as endogenous reference compounds (ERCs). The method was validated and applied to urine samples collected by three male volunteers after the administration of nandrolone-based formulations. Before the instrumental analysis, urine samples (<25 ml) were hydrolyzed with ß-glucuronidase from Escherichia coli and extracted with n-pentane. Compounds of interest were purified through a single (for PT) or double (for 19-NE, 19-NA, A, and PD) liquid chromatographic step, to reduce the background noise and eliminate interferences that could have affect the accuracy of δ13 C values. The limit of quantification (LOQ) of 2 ng/ml was ensured for both 19-NA and 19-NE. The 19-NE determination could be helpful in case of "unstable" urine samples, in late excretion phases or when coadministration with 5α-reductase inhibitors occur.
Assuntos
Dopagem Esportivo/prevenção & controle , Estranos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Detecção do Abuso de Substâncias/métodos , Adulto , Androsterona/análise , Feminino , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Nandrolona/administração & dosagem , Nandrolona/metabolismo , Pregnanodiol/análise , Pregnanotriol/análiseRESUMO
RATIONALE: The aromatase inhibitor formestane (4-hydroxyandrost-4-ene-3,17-dione) is included in the World Anti-Doping Agency's List of Prohibited Substances in Sport. However, it also occurs endogenously as do its 2-, 6- and 11-hydroxy isomers. The aim of this study is to distinguish the different isomers using gas chromatography/electron ionization mass spectrometry (GC/EI-MS) for enhanced confidence in detection and selectivity for determination. METHODS: Established derivatization protocols to introduce [2 H9 ]TMS were followed to generate perdeuterotrimethylsilylated and mixed deuterated derivatives for nine different hydroxy steroids, all with 3-keto-4-ene structure. Formestane was additionally labelled with H2 18 O to obtain derivatives doubly labelled with [2 H9 ]TMS and 18 O. GC/EI-MS spectra of labelled and unlabelled TMS derivatives were compared. Proposals for the generation of fragment ions were substantiated by high-resolution MS (GC/QTOFMS) and tandem mass spectrometry (MS/MS) experiments. RESULTS: Subclass-specific fragment ions include m/z 319 for the 6-hydroxy and m/z 219 for the 11-hydroxy compounds. Ions at m/z 415, 356, 341, 313, 269 and 267 were indicative for the 2- and 4-hydroxy compounds. For their discrimination the transition m/z 503 â 269 was selective for formestane. In 2-, 4- and 6-hydroxy steroids loss of a TMSO radical takes place as cleavage of a TMS-derived methyl radical and a neutral loss of (CH3 )2 SiO. Further common fragments were also elucidated. CONCLUSIONS: With the help of stable isotope labelling, the structures of postulated diagnostic fragment ions for the different steroidal subclasses were elucidated. 18 O-labelling of the other compounds will be addressed in future studies to substantiate the obtained findings. To increase method sensitivity MS3 may be suitable in future bioanalytical applications requiring discrimination of the 2- and 4-hydroxy compounds.
Assuntos
Androstenodiona/análogos & derivados , Cromatografia Gasosa-Espectrometria de Massas/métodos , Esteroides/análise , Espectrometria de Massas em Tandem/métodos , Androstenodiona/análise , Androstenodiona/química , Dopagem Esportivo , Esteroides/químicaRESUMO
RATIONALE: The selection of the most appropriate metabolites of the substances included in the Prohibited List of the World Anti-Doping Agency (WADA) is fundamental for setting up methods allowing the detection of their intake by mass spectrometric methods. The aim of this work is to investigate the metabolism of arimistane (an aromatase inhibitor included in the WADA list) in order to improve its detection capacity among the antidoping community. METHODS: Urinary samples collected after controlled single administration of arimistane in three healthy volunteers were analysed using the common routine sample preparation in antidoping laboratories to determine the steroid profile parameters considered in the steroid module of the Athlete Biological Passport by gas chromatography coupled to tandem mass spectrometry (GC/MS/MS). For the elucidation of the proposed metabolites, GC coupled to high-accuracy MS (GC/qTOFMS) was used. Both mass spectrometers were operated in electron ionization mode. Non-conjugated (free), glucuronated and sulfated fractions were analysed separately. RESULTS: No relevant effects on the steroid profile could be detected after a single oral dose (25 mg). Up to 15 metabolites, present only in the post-administration samples, were detected and some structures were postulated. These metabolites are mainly excreted as glucuro-conjugated into urine and only minor amounts of two metabolites are also excreted unconjugated or as sulfates. CONCLUSIONS: Arimistane itself was not observed in the free or glucuronated fractions, but only in the sulfate fraction. The peaks showing mass spectra in agreement with hydroxylated metabolites did not match with those for 7-keto-DHEA, 7α- or 7ß-hydroxy-DHEA. This suggests that the first hydroxylation did not occur on C3, but on C2. These newly described metabolites allow the specific detection of arimistane misuse in sports.
Assuntos
Inibidores da Aromatase/urina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Detecção do Abuso de Substâncias/métodos , Adulto , Inibidores da Aromatase/metabolismo , Dopagem Esportivo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esteroides/metabolismo , Esteroides/urina , Espectrometria de Massas em Tandem/métodos , Urina/químicaRESUMO
Recent studies suggest that the anabolic effect of ecdysterone, a naturally occurring steroid hormone claimed to enhance physical performance, is mediated by estrogen receptor (ER) binding. In comparison with the prohibited anabolic agents (e.g., metandienone and others), ecdysterone revealed to be even more effective in a recent study performed in rats. However, scientific studies in humans are very rarely accessible. Thus, our project aimed at investigating the effects of ecdysterone-containing products on human sport exercise. A 10-week intervention study of strength training of young men (n = 46) was carried out. Different doses of ecdysterone-containing supplements have been administered during the study to evaluate the performance-enhancing effect. Analysis of blood and urine samples for ecdysterone and potential biomarkers of performance enhancement has been conducted. To ensure the specificity of the effects measured, a comprehensive screening for prohibited performance-enhancing substances was also carried out. Furthermore, the administered supplement has been tested for the absence of anabolic steroid contaminations prior to administration. Significantly higher increases in muscle mass were observed in those participants that were dosed with ecdysterone. The same hypertrophic effects were also detected in vitro in C2C12 myotubes. Even more relevant with respect to sports performance, significantly more pronounced increases in one-repetition bench press performance were observed. No increase in biomarkers for liver or kidney toxicity was noticed. These data underline the effectivity of an ecdysterone supplementation with respect to sports performance. Our results strongly suggest the inclusion of ecdysterone in the list of prohibited substances and methods in sports in class S1.2 "other anabolic agents".
Assuntos
Anabolizantes/farmacologia , Suplementos Nutricionais , Ecdisterona/farmacologia , Substâncias para Melhoria do Desempenho/farmacologia , Adulto , Anabolizantes/administração & dosagem , Animais , Desempenho Atlético/fisiologia , Biomarcadores/metabolismo , Linhagem Celular , Método Duplo-Cego , Ecdisterona/administração & dosagem , Humanos , Masculino , Camundongos , Mioblastos/efeitos dos fármacos , Substâncias para Melhoria do Desempenho/administração & dosagem , Treinamento Resistido , Adulto JovemRESUMO
RATIONALE: Isoflavones are a group of flavonoids that may be of interest in sport doping because they can be used by athletes in the recovery periods after the administration of anabolic steroids, with the aim of increasing the natural production of luteinizing hormone (LH) and, consequently, the biosynthesis of endogenous androgens. METHODS: The in vivo metabolism of methoxyisoflavone (5-methyl-7-methoxyisoflavone) and ipriflavone (7-isopropoxyisoflavone), respectively present in a dietary supplement and in a pharmaceutical preparation, was investigated. The study was carried out by the analysis of urinary samples collected from male Caucasian subjects before, during and after the oral administration of methoxyisoflavone or ipriflavone. After enzymatic hydrolysis and liquid-liquid extraction, all urinary samples were analyzed by gas chromatography/quadrupole time-of-flight (qTOF MS system/qTOF) electron ionization mass spectrometry (EI-MS). RESULTS: Eight metabolites of methoxyisoflavone and six metabolites of ipriflavone were isolated. The corresponding accurate mass spectra are specific for isoflavone structures and revealed also a retro-Diels-Alder fragmentation. CONCLUSIONS: When excreted in large amounts, the urinary metabolites of methoxyisoflavone and ipriflavone can be traced to potential confounding factors in doping analysis. As methoxyisoflavone and ipriflavone have been shown to inhibit the enzyme aromatase, thus interfering with the normal metabolic pathways of testosterone, the detection of their intake, by screening for the presence of their main metabolites in urine, might be helpful in routine doping control analysis.
Assuntos
Anabolizantes/urina , Dopagem Esportivo/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Isoflavonas/urina , Espectrometria de Massas/métodos , Adulto , Anabolizantes/síntese química , Anabolizantes/metabolismo , Humanos , Isoflavonas/síntese química , Isoflavonas/metabolismo , Masculino , Redes e Vias MetabólicasRESUMO
The detection of the abuse of pseudoendogenous steroids (testosterone and/or its precursors) is currently based, when possible, on the application of the steroid module of the World Anti-Doping Agency (WADA), athlete biological passport (ABP), implemented through the global database, ADAMS. When a suspicious sample is detected, the confirmation by isotope ratio mass spectrometry (IRMS) is required. It is well known that this confirmation procedure is time consuming and expensive and can be only applied on a reduced number of samples. In previous studies we have demonstrated that the longitudinal evaluation of the IRMS data is able to detect positive samples that otherwise will be evaluated as negative, improving the efficacy of the fight against doping in sport. This would require the analysis of a much larger volume of samples by IRMS. The aim of the present work is to describe an IRMS screening method allowing to increase the throughput of samples that can be analyzed by IRMS. The detection efficacy of the method is compared with the confirmation method in use, and to assess its robustness and applicability, all the samples of a major cycling stage competition were analyzed, with the agreement of the testing authority, under routine conditions and response times. The results obtained permit to conclude that the IRMS screening method here proposed has adequate selectivity and produces results that overlap with the already validated method currently in use permitting to analyze a much higher volume of samples even during a major event without compromising the detection capacity. Copyright © 2017 John Wiley & Sons, Ltd.
Assuntos
Dopagem Esportivo , Esteroides/análise , Testosterona/análise , Atletas , Humanos , Programas de Rastreamento , Espectrometria de Massas , Análise Espectral , Testosterona/químicaRESUMO
Urine collection containers used in the doping control collection procedure do not provide a protective environment for urine, against degradation by microorganisms and proteolytic enzymes. An in-house chemical stabilization mixture was developed to tackle urine degradation problems encountered in human sport samples, in cases of microbial contamination or proteolytic activity. The mixture consists of antimicrobial substances and protease inhibitors for the simultaneous inactivation of a wide range of proteolytic enzymes. It has already been tested in lab-scale, as part of World Anti-Doping Agency's (WADA) funded research project, in terms of efficiency against microbial and proteolytic activity. The present work, funded also by WADA, is a follow-up study on the improvement of chemical stabilization mixture composition, application mode and limitation of interferences, using pilot urine collection containers, spray-coated in their internal surface with the chemical stabilization mixture. Urine in plastic stabilized collection containers have been gone through various incubation cycles to test for stabilization efficiency and analytical matrix interferences by three WADA accredited Laboratories (Athens, Ghent, and Rome). The spray-coated chemical stabilization mixture was tested against microorganism elimination and steroid glucuronide degradation, as well as enzymatic breakdown of proteins, such as intact hCG, recombinant erythropoietin and small peptides (GHRPs, ipamorelin), induced by proteolytic enzymes. Potential analytical interferences, observed in the presence of spray-coated chemical stabilization mixture, were recorded using routine screening procedures. The results of the current study support the application of the spray-coated plastic urine container, in the doping control collection procedure. Copyright © 2016 John Wiley & Sons, Ltd.
Assuntos
Manejo de Espécimes/métodos , Detecção do Abuso de Substâncias/métodos , Urinálise/métodos , Urina/química , Gonadotropina Coriônica/urina , DNA/urina , Dopagem Esportivo , Eritropoetina/urina , Seguimentos , Humanos , Peptídeos/urina , Projetos Piloto , Proteólise , Proteínas Recombinantes/urina , Manejo de Espécimes/instrumentação , Esteroides/urina , Detecção do Abuso de Substâncias/instrumentação , Urinálise/instrumentação , Urina/microbiologiaAssuntos
Dopagem Esportivo , Fumar/epidemiologia , Adolescente , Adulto , Atletas , Feminino , Hábitos , Humanos , Itália , Masculino , Prevalência , Adulto JovemRESUMO
BACKGROUND: The intake of erythropoietins as performance-enhancing drugs is banned in sport. The current method for their detection is based on advanced electrophoretic techniques (IEF-PAGE and SDS-PAGE/sarcosyl-PAGE) with double-blotting and chemiluminescence detection, requiring at least 2.5 days to be completed. Methodology & Results: The proposed procedure, based on vacuum-driven blotting technology, drastically reduces the time necessary to complete the analysis, while still fulfilling the criteria of the World Anti-Doping Agency. Validation was carried out on urine samples spiked with different recombinant erythropoietins, as well as on urine samples obtained following controlled excretion studies and on anonymized urine samples from antidoping tests. CONCLUSION: The proposed approach, allowing a faster turnaround time, could be very advantageous on the occasion of major sport international events (i.e., Olympic Games).
Assuntos
Eletroforese/métodos , Eritropoetina/química , Eritropoetina/urina , Substâncias para Melhoria do Desempenho/química , Substâncias para Melhoria do Desempenho/urina , Linhagem Celular Tumoral , Dopagem Esportivo , Eletroforese/instrumentação , Humanos , Medições Luminescentes , Fatores de Tempo , VácuoRESUMO
The present study was designed to provide preliminary information on the potential impact of metabolic drug-drug interaction on the effectiveness of doping control strategies currently followed by the anti-doping laboratories to detect the intake of banned agents. In vitro assays based on the use of human liver microsomes and recombinant CYP isoforms were designed and performed to characterize the phase I metabolic profile of the prohibited agent toremifene, selected as a prototype drug of the class of selective oestrogen receptor modulators, both in the absence and in the presence of medicaments (fluconazole, ketoconazole, itraconazole, miconazole, cimetidine, ranitidine, fluoxetine, paroxetine, nefazodone) not included in the World Anti-Doping Agency list of prohibited substances and methods and frequently administered to athletes. The results show that the in vitro model developed in this study was adequate to simulate the in vivo metabolism of toremifene, confirming the results obtained in previous studies. Furthermore, our data also show that ketoconazole, itraconazole, miconazole and nefazodone cause a marked modification in the production of the metabolic products (i.e. hydroxylated and carboxylated metabolites) normally selected by the anti-doping laboratories as target analytes to detect toremifene intake; moderate variations were registered in the presence of fluconazole, paroxetine and fluoxetine; while no significant modifications were measured in the presence of ranitidine and cimetidine. This evidence imposes that the potential effect of drug-drug interactions is duly taken into account in anti-doping analysis, also for a broader significance of the analytical results.
Assuntos
Dopagem Esportivo/métodos , Interações Medicamentosas , Desintoxicação Metabólica Fase I , Toremifeno/metabolismo , Toremifeno/farmacocinética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Técnicas In Vitro , Isoenzimas/genética , Isoenzimas/metabolismo , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Moduladores Seletivos de Receptor Estrogênico/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacocinética , Detecção do Abuso de SubstânciasRESUMO
The use of selective oestrogen receptor modulators has been prohibited since 2005 by the World Anti-Doping Agency regulations. As they are extensively cleared by hepatic and intestinal metabolism via oxidative and conjugating enzymes, a complete investigation of their biotransformation pathways and kinetics of excretion is essential for the anti-doping laboratories to select the right marker(s) of misuse. This work was designed to characterize the chemical reactions and the metabolizing enzymes involved in the metabolic routes of clomiphene, tamoxifen and toremifene. To determine the biotransformation pathways of the substrates under investigation, urine samples were collected from six subjects (three females and three males) after oral administration of 50 mg of clomiphene citrate or 40 mg of tamoxifen or 60 mg of toremifene, whereas the metabolizing enzymes were characterized in vitro, using expressed cytochrome P450s and uridine diphosphoglucuronosyltransferases. The separation, identification and determination of the compounds formed in the in vivo and in vitro experiments were carried out by liquid chromatography coupled with mass spectrometry techniques using different acquisition modes. Clomiphene, tamoxifen and toremifene were biotransformed to 22, 23 and 18 metabolites respectively, these phase I reactions being catalyzed mainly by CYP3A4 and CYP2D6 isoforms and, to a lesser degree, by CYP3A5, CYP2B6, CYP2C9, CYP2C19 isoforms. The phase I metabolic reactions include hydroxylation in different positions, N-oxidation, dehalogenation, carboxylation, hydrogenation, methoxylation, N-dealkylation and combinations of them. In turn, most of the phase I metabolites underwent conjugation reaction to form the corresponding glucuro-conjugated mainly by UGT1A1, UGT1A3, UGT1A4, UGT2B7, UGT2B15 and UGT2B17 isoenzymes.
Assuntos
Cromatografia Líquida/métodos , Clomifeno/farmacocinética , Tamoxifeno/farmacocinética , Espectrometria de Massas em Tandem/métodos , Toremifeno/farmacocinética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Biotransformação , Clomifeno/metabolismo , Clomifeno/urina , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Remoção de Radical Alquila , Dopagem Esportivo , Feminino , Glucuronosiltransferase/metabolismo , Humanos , Hidroxilação , Masculino , Microssomos Hepáticos/metabolismo , Oxirredução , Oxirredutases N-Desmetilantes/metabolismo , Tamoxifeno/metabolismo , Tamoxifeno/urina , Toremifeno/metabolismo , Toremifeno/urinaRESUMO
The confirmation by GC/C/IRMS of the exogenous origin of pseudo-endogenous steroids from human urine samples requires extracts of adequate purity. A strategy based on HPLC sample purification prior to the GC/C/IRMS analysis of human urinary endogenous androgens (i.e. testosterone, androsterone and/or androstenediols), is presented. A method without any additional derivatization step is proposed, allowing to simplify the urine pretreatment procedure, leading to extracts free of interferences permitting precise and accurate IRMS analysis, without the need of correcting the measured delta values for the contribution of the derivatizing agent. The HPLC extracts were adequately combined to both reduce the number of GC/C/IRMS runs and to have appropriate endogenous reference compounds (ERC; i.e. pregnanediol, 11-keto-etiocholanolone) on each GC-IRMS run. The purity of the extracts was assessed by their parallel analysis by gas chromatography coupled to mass spectrometry, with GC conditions identical to those of the GC/C/IRMS assay. The method has been validated according to ISO17025 requirements (within assay precision below 0.3(13)C delta units and between assay precision below 0.6(13)C delta units for most of the compounds investigated) fulfilling the World Anti-Doping Agency requirements.