Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
PLoS One ; 15(5): e0233779, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470059

RESUMO

Trehalose metabolism in yeast has been linked to a variety of phenotypes, including heat resistance, desiccation tolerance, carbon-source utilization, and sporulation. The relationships among the several phenotypes of mutants unable to synthesize trehalose are not understood, even though the pathway is highly conserved. One of these phenotypes is that tps1Δ strains cannot reportedly grow on media containing glucose or fructose, even when another carbon source they can use (e.g. galactose) is present. Here we corroborate the recent observation that a small fraction of yeast tps1Δ cells do grow on glucose, unlike the majority of the population. This is not due to a genetic alteration, but instead resembles the persister phenotype documented in many microorganisms and cancer cells undergoing lethal stress. We extend these observations to show that this phenomenon is glucose-specific, as it does not occur on another highly fermented carbon source, fructose. We further demonstrate that this phenomenon appears to be related to mitochondrial complex III function, but unrelated to inorganic phosphate levels in the cell, as had previously been suggested. Finally, we found that this phenomenon is specific to S288C-derived strains, and is the consequence of a variant in the MKT1 gene.


Assuntos
Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Fermentação , Frutose/metabolismo , Glucosiltransferases/genética , Mutação com Perda de Função , Trealose/biossíntese
2.
ACS Chem Biol ; 13(10): 3011-3020, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30240188

RESUMO

Sugar alcohols (polyols) exist widely in nature. While some specific sugar alcohol phosphatases are known, there is no known phosphatase for some important sugar alcohols (e.g., sorbitol-6-phosphate). Using liquid chromatography-mass spectrometry-based metabolomics, we screened yeast strains with putative phosphatases of unknown function deleted. We show that the yeast gene YNL010W, which has close homologues in all fungi species and some plants, encodes a sugar alcohol phosphatase. We term this enzyme, which hydrolyzes sorbitol-6-phosphate, ribitol-5-phosphate, and (d)-glycerol-3-phosphate, polyol phosphatase 1 or PYP1. Polyol phosphates are structural analogs of the enediol intermediate of phosphoglucose isomerase (Pgi). We find that sorbitol-6-phosphate and ribitol-5-phosphate inhibit Pgi and that Pyp1 activity is important for yeast to maintain Pgi activity in the presence of environmental sugar alcohols. Pyp1 expression is strongly positively correlated with yeast growth rate, presumably because faster growth requires greater glycolytic and accordingly Pgi flux. Thus, yeast express the previously uncharacterized enzyme Pyp1 to prevent inhibition of glycolysis by sugar alcohol phosphates. Pyp1 may be useful for engineering sugar alcohol production.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fosfatos Açúcares/metabolismo , Deleção de Genes , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Hidrólise , Monoéster Fosfórico Hidrolases/genética , Proteínas de Saccharomyces cerevisiae/genética , Fosfatos Açúcares/química
3.
Nucleic Acids Res ; 42(6): e48, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24445804

RESUMO

A conditional gene expression system that is fast-acting, is tunable and achieves single-gene specificity was recently developed for yeast. A gene placed directly downstream of a modified GAL1 promoter containing six Zif268 binding sequences (with single nucleotide spacing) was shown to be selectively inducible in the presence of ß-estradiol, so long as cells express the artificial transcription factor, Z3EV (a fusion of the Zif268 DNA binding domain, the ligand binding domain of the human estrogen receptor and viral protein 16). We show the strength of Z3EV-responsive promoters can be modified using straightforward design principles. By moving Zif268 binding sites toward the transcription start site, expression output can be nearly doubled. Despite the reported requirement of estrogen receptor dimerization for hormone-dependent activation, a single binding site suffices for target gene activation. Target gene expression levels correlate with promoter binding site copy number and we engineer a set of inducible promoter chassis with different input-output characteristics. Finally, the coupling between inducer identity and gene activation is flexible: the ligand specificity of Z3EV can be re-programmed to respond to a non-hormone small molecule with only five amino acid substitutions in the human estrogen receptor domain, which may prove useful for industrial applications.


Assuntos
Regulação Fúngica da Expressão Gênica , Engenharia Genética , Saccharomyces cerevisiae/genética , Regiões 5' não Traduzidas , Sítios de Ligação , Estradiol/farmacologia , Galactoquinase/genética , Ligantes , Regiões Promotoras Genéticas , Receptores de Estrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Biologia Sintética/métodos , Fatores de Transcrição/metabolismo
4.
J Vis Exp ; (81): e51153, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24300440

RESUMO

Synthetic biology aims to rationally design and build synthetic circuits with desired quantitative properties, as well as provide tools to interrogate the structure of native control circuits. In both cases, the ability to program gene expression in a rapid and tunable fashion, with no off-target effects, can be useful. We have constructed yeast strains containing the ACT1 promoter upstream of a URA3 cassette followed by the ligand-binding domain of the human estrogen receptor and VP16. By transforming this strain with a linear PCR product containing a DNA binding domain and selecting against the presence of URA3, a constitutively expressed artificial transcription factor (ATF) can be generated by homologous recombination. ATFs engineered in this fashion can activate a unique target gene in the presence of inducer, thereby eliminating both the off-target activation and nonphysiological growth conditions found with commonly used conditional gene expression systems. A simple method for the rapid construction of GFP reporter plasmids that respond specifically to a native or artificial transcription factor of interest is also provided.


Assuntos
Proteínas de Fluorescência Verde/genética , Engenharia de Proteínas/métodos , Biologia Sintética/métodos , Fatores de Transcrição/genética , Sequência de Bases , Conexina 43/genética , Citometria de Fluxo/métodos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/química , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos/genética , Plasmídeos/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/química , Leveduras/genética , Leveduras/metabolismo
5.
Nature ; 500(7464): 571-4, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23873039

RESUMO

The dynamics of adaptation determine which mutations fix in a population, and hence how reproducible evolution will be. This is central to understanding the spectra of mutations recovered in the evolution of antibiotic resistance, the response of pathogens to immune selection, and the dynamics of cancer progression. In laboratory evolution experiments, demonstrably beneficial mutations are found repeatedly, but are often accompanied by other mutations with no obvious benefit. Here we use whole-genome whole-population sequencing to examine the dynamics of genome sequence evolution at high temporal resolution in 40 replicate Saccharomyces cerevisiae populations growing in rich medium for 1,000 generations. We find pervasive genetic hitchhiking: multiple mutations arise and move synchronously through the population as mutational 'cohorts'. Multiple clonal cohorts are often present simultaneously, competing with each other in the same population. Our results show that patterns of sequence evolution are driven by a balance between these chance effects of hitchhiking and interference, which increase stochastic variation in evolutionary outcomes, and the deterministic action of selection on individual mutations, which favours parallel evolutionary solutions in replicate populations.


Assuntos
Células Clonais/citologia , Evolução Molecular , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Adaptação Fisiológica/genética , Núcleo Celular/genética , Células Clonais/metabolismo , Genes Fúngicos/genética , Mutação/genética , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/citologia , Processos Estocásticos , Fatores de Tempo
6.
Nucleic Acids Res ; 41(4): e57, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275543

RESUMO

A general method for the dynamic control of single gene expression in eukaryotes, with no off-target effects, is a long-sought tool for molecular and systems biologists. We engineered two artificial transcription factors (ATFs) that contain Cys(2)His(2) zinc-finger DNA-binding domains of either the mouse transcription factor Zif268 (9 bp of specificity) or a rationally designed array of four zinc fingers (12 bp of specificity). These domains were expressed as fusions to the human estrogen receptor and VP16 activation domain. The ATFs can rapidly induce a single gene driven by a synthetic promoter in response to introduction of an otherwise inert hormone with no detectable off-target effects. In the absence of inducer, the synthetic promoter is inactive and the regulated gene product is not detected. Following addition of inducer, transcripts are induced >50-fold within 15 min. We present a quantitative characterization of these ATFs and provide constructs for making their implementation straightforward. These new tools allow for the elucidation of regulatory network elements dynamically, which we demonstrate with a major metabolic regulator, Gcn4p.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/química , Regulação da Expressão Gênica , Transcrição Gênica , Dedos de Zinco , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Estradiol/farmacologia , Redes Reguladoras de Genes , Engenharia Genética/métodos , Genoma Fúngico , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Humanos , Camundongos , Estrutura Terciária de Proteína , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Mol Biol Cell ; 24(2): 115-28, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23171550

RESUMO

Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000-fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas ras/metabolismo , Adaptação Fisiológica , Meios de Cultura , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Desidratação , Técnicas de Inativação de Genes , Fosfatidilinositol 3-Quinases/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Sirolimo/farmacologia , Estresse Fisiológico , Fatores de Transcrição/antagonistas & inibidores , Proteínas ras/genética
8.
G3 (Bethesda) ; 2(8): 943-59, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22908043

RESUMO

Cytoprotective functions of a 20S proteasome activator were investigated. Saccharomyces cerevisiae Blm10 and human 20S proteasome activator 200 (PA200) are homologs. Comparative genome-wide analyses of untreated diploid cells lacking Blm10 and growing at steady state at defined growth rates revealed downregulation of numerous genes required for accurate chromosome structure, assembly and repair, and upregulation of a specific subset of genes encoding protein-folding chaperones. Blm10 loss or truncation of the Ubp3/Blm3 deubiquitinating enzyme caused massive chromosomal damage and cell death in homozygous diploids after phleomycin treatments, indicating that Blm10 and Ubp3/Blm3 function to stabilize the genome and protect against cell death. Diploids lacking Blm10 also were sensitized to doxorubicin, hydroxyurea, 5-fluorouracil, rapamycin, hydrogen peroxide, methyl methanesulfonate, and calcofluor. Fluorescently tagged Blm10 localized in nuclei, with enhanced fluorescence after DNA replication. After DNA damage that caused a classic G2/M arrest, fluorescence remained diffuse, with evidence of nuclear fragmentation in some cells. Protective functions of Blm10 did not require the carboxyl-terminal region that makes close contact with 20S proteasomes, indicating that protection does not require this contact or the truncated Blm10 can interact with the proteasome apart from this region. Without its carboxyl-terminus, Blm10((-339aa)) localized to nuclei in untreated, nonproliferating (G(0)) cells, but not during G(1) S, G(2), and M. The results indicate Blm10 functions in protective mechanisms that include the machinery that assures proper assembly of chromosomes. These essential guardian functions have implications for ubiquitin-independent targeting in anticancer therapy. Targeting Blm10/PA200 together with one or more of the upregulated chaperones or a conventional treatment could be efficacious.


Assuntos
Regulação para Baixo , Complexo de Endopeptidases do Proteassoma/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Antineoplásicos/toxicidade , Núcleo Celular/metabolismo , Dano ao DNA/genética , Diploide , Endopeptidases/genética , Endopeptidases/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Instabilidade Genômica , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Chaperonas Moleculares/metabolismo , Mutação , Oxidantes/toxicidade , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulação para Cima/genética
9.
Mol Biol Cell ; 23(10): 1986-97, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22456505

RESUMO

The respiratory metabolic cycle in budding yeast (Saccharomyces cerevisiae) consists of two phases that are most simply defined phenomenologically: low oxygen consumption (LOC) and high oxygen consumption (HOC). Each phase is associated with the periodic expression of thousands of genes, producing oscillating patterns of gene expression found in synchronized cultures and in single cells of slowly growing unsynchronized cultures. Systematic variation in the durations of the HOC and LOC phases can account quantitatively for well-studied transcriptional responses to growth rate differences. Here we show that a similar mechanism-transitions from the HOC phase to the LOC phase-can account for much of the common environmental stress response (ESR) and for the cross-protection by a preliminary heat stress (or slow growth rate) to subsequent lethal heat stress. Similar to the budding yeast metabolic cycle, we suggest that a metabolic cycle, coupled in a similar way to the ESR, in the distantly related fission yeast, Schizosaccharomyces pombe, and in humans can explain gene expression and respiratory patterns observed in these eukaryotes. Although metabolic cycling is associated with the G0/G1 phase of the cell division cycle of slowly growing budding yeast, transcriptional cycling was detected in the G2 phase of the division cycle in fission yeast, consistent with the idea that respiratory metabolic cycling occurs during the phases of the cell division cycle associated with mass accumulation in these divergent eukaryotes.


Assuntos
Meio Ambiente , Regulação da Expressão Gênica , Resposta ao Choque Térmico/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ciclo Celular/genética , Células Cultivadas , Análise por Conglomerados , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Perfilação da Expressão Gênica , Humanos , Redes e Vias Metabólicas/genética , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Consumo de Oxigênio/genética , Cultura Primária de Células , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
Mol Biol Cell ; 22(22): 4447-59, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21965290

RESUMO

We describe the development and characterization of a system that allows the rapid and specific induction of individual genes in the yeast Saccharomyces cerevisiae without changes in nutrients or temperature. The system is based on the chimeric transcriptional activator Gal4dbd.ER.VP16 (GEV). Upon addition of the hormone ß-estradiol, cytoplasmic GEV localizes to the nucleus and binds to promoters containing Gal4p consensus binding sequences to activate transcription. With galactokinase Gal1p and transcriptional activator Gal4p absent, the system is fast-acting, resulting in readily detectable transcription within 5 min after addition of the inducer. ß-Estradiol is nearly a gratuitous inducer, as indicated by genome-wide profiling that shows unintended induction (by GEV) of only a few dozen genes. Response to inducer is graded: intermediate concentrations of inducer result in production of intermediate levels of product protein in all cells. We present data illustrating several applications of this system, including a modification of the regulated degron method, which allows rapid and specific degradation of a specific protein upon addition of ß-estradiol. These gene induction and protein degradation systems provide important tools for studying the dynamics and functional relationships of genes and their respective regulatory networks.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Estradiol/farmacologia , Galactoquinase/genética , Galactoquinase/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fatores de Transcrição/química , Fatores de Transcrição/genética
11.
Mol Biol Cell ; 22(21): 4192-204, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21900497

RESUMO

A yeast strain lacking Met4p, the primary transcriptional regulator of the sulfur assimilation pathway, cannot synthesize methionine. This apparently simple auxotroph did not grow well in rich media containing excess methionine, forming small colonies on yeast extract/peptone/dextrose plates. Faster-growing large colonies were abundant when overnight cultures were plated, suggesting that spontaneous suppressors of the growth defect arise with high frequency. To identify the suppressor mutations, we used genome-wide single-nucleotide polymorphism and standard genetic analyses. The most common suppressors were loss-of-function mutations in OPI1, encoding a transcriptional repressor of phospholipid metabolism. Using a new system that allows rapid and specific degradation of Met4p, we could study the dynamic expression of all genes following loss of Met4p. Experiments using this system with and without Opi1p showed that Met4 activates and Opi1p represses genes that maintain levels of S-adenosylmethionine (SAM), the substrate for most methyltransferase reactions. Cells lacking Met4p grow normally when either SAM is added to the media or one of the SAM synthetase genes is overexpressed. SAM is used as a methyl donor in three Opi1p-regulated reactions to create the abundant membrane phospholipid, phosphatidylcholine. Our results show that rapidly growing cells require significant methylation, likely for the biosynthesis of phospholipids.


Assuntos
Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Enxofre/metabolismo , Substituição de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Membrana Celular/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Metionina/metabolismo , Metilação , Mutação , Mio-Inositol-1-Fosfato Sintase/genética , Mio-Inositol-1-Fosfato Sintase/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfolipídeos/biossíntese , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
12.
Proc Natl Acad Sci U S A ; 107(43): 18551-6, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20937885

RESUMO

To study adaptive evolution in defined environments, we performed evolution experiments with Saccharomyces cerevisiae (yeast) in nitrogen-limited chemostat cultures. We used DNA microarrays to identify copy-number variation associated with adaptation and observed frequent amplifications and deletions at the GAP1 locus. GAP1 encodes the general amino acid permease, which transports amino acids across the plasma membrane. We identified a self-propagating extrachromosomal circular DNA molecule that results from intrachromosomal recombination between long terminal repeats (LTRs) flanking GAP1. Extrachromosomal DNA circles (GAP1(circle)) contain GAP1, the replication origin ARS1116, and a single hybrid LTR derived from recombination between the two flanking LTRs. Formation of the GAP1(circle) is associated with deletion of chromosomal GAP1 (gap1Δ) and production of a single hybrid LTR at the GAP1 chromosomal locus. The GAP1(circle) is selected following prolonged culturing in L-glutamine-limited chemostats in a manner analogous to the selection of oncogenes present on double minutes in human cancers. Clones carrying only the gap1Δ allele were selected under various non-amino acid nitrogen limitations including ammonium, urea, and allantoin limitation. Previous studies have shown that the rate of intrachromosomal recombination between tandem repeats is stimulated by transcription of the intervening sequence. The high level of GAP1 expression in nitrogen-limited chemostats suggests that the frequency of GAP1(circle) and gap1Δ generation may be increased under nitrogen-limiting conditions. We propose that this genomic architecture facilitates evolvability of S. cerevisiae populations exposed to variation in levels and sources of environmental nitrogen.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Genes Fúngicos , Nitrogênio/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adaptação Biológica , Alelos , Sistemas de Transporte de Aminoácidos/metabolismo , Sequência de Bases , Quebras de DNA , DNA Circular/genética , DNA Fúngico/genética , Herança Extracromossômica , Deleção de Genes , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Seleção Genética , Homologia de Sequência do Ácido Nucleico , Sequências Repetidas Terminais
13.
PLoS Comput Biol ; 5(1): e1000257, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19119411

RESUMO

Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Modelos Biológicos , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proliferação de Células , Simulação por Computador
14.
Proc Natl Acad Sci U S A ; 105(19): 6930-5, 2008 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-18456835

RESUMO

Starvation of yeast cultures limited by auxotrophic requirements results in glucose wasting and failure to achieve prompt cell-cycle arrest when compared with starvation for basic natural nutrients like phosphate or sulfate. We measured the survival of yeast auxotrophs upon starvation for different nutrients and found substantial differences: When deprived of leucine or uracil, viability declined exponentially with a half-life of <2 days, whereas when the same strains were deprived of phosphate or sulfate, the half-life was approximately 10 days. The survival rates of nongrowing auxotrophs deprived of uracil or leucine depended on the carbon source available during starvation, but were independent of the carbon source during prior growth. We performed an enrichment procedure for mutants that suppress lethality during auxotrophy starvation. We repeatedly found loss-of-function mutations in a number of functionally related genes. Mutations in PPM1, which methylates protein phosphatase 2A, and target of rapamycin (TOR1) were characterized further. Deletion of PPM1 almost completely suppressed the rapid lethality and substantially suppressed glucose wasting during starvation for leucine or uracil. Suppression by a deletion of TOR1 was less complete. We suggest that, similar to the Warburg effect observed in tumor cells, starving yeast auxotrophs wastes glucose as a consequence of the failure of conserved growth control pathways. Furthermore, we suggest that our results on condition-dependent chronological lifespan have important implications for the interpretation and design of studies on chronological aging.


Assuntos
Viabilidade Microbiana , Fenômenos Fisiológicos da Nutrição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos , Contagem de Colônia Microbiana , Meios de Cultura , Alimentos , Redes Reguladoras de Genes , Genótipo , Glucose/metabolismo , Leucina/deficiência , Mutação/genética , Fosfatos/deficiência , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/isolamento & purificação , Uracila/metabolismo
15.
Mol Biol Cell ; 19(1): 352-67, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17959824

RESUMO

We studied the relationship between growth rate and genome-wide gene expression, cell cycle progression, and glucose metabolism in 36 steady-state continuous cultures limited by one of six different nutrients (glucose, ammonium, sulfate, phosphate, uracil, or leucine). The expression of more than one quarter of all yeast genes is linearly correlated with growth rate, independent of the limiting nutrient. The subset of negatively growth-correlated genes is most enriched for peroxisomal functions, whereas positively correlated genes mainly encode ribosomal functions. Many (not all) genes associated with stress response are strongly correlated with growth rate, as are genes that are periodically expressed under conditions of metabolic cycling. We confirmed a linear relationship between growth rate and the fraction of the cell population in the G0/G1 cell cycle phase, independent of limiting nutrient. Cultures limited by auxotrophic requirements wasted excess glucose, whereas those limited on phosphate, sulfate, or ammonia did not; this phenomenon (reminiscent of the "Warburg effect" in cancer cells) was confirmed in batch cultures. Using an aggregate of gene expression values, we predict (in both continuous and batch cultures) an "instantaneous growth rate." This concept is useful in interpreting the system-level connections among growth rate, metabolism, stress, and the cell cycle.


Assuntos
Ciclo Celular , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Análise por Conglomerados , Meios de Cultura , Etanol/metabolismo , Alimentos , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Glucose/metabolismo , Modelos Biológicos , Análise de Regressão , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Transcrição Gênica
16.
Proc Natl Acad Sci U S A ; 103(52): 19848-53, 2006 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-17167050

RESUMO

The interactions between cancer cells and the surrounding host stromal tissue play a critical role in tumor progression and metastasis, but the molecular nature of this relationship remains largely uncharacterized. Furthermore, although genetic changes of neoplastic cells in tumors contribute significantly to tumor progression, it is not known whether similar changes occur in the adjacent host stromal microenvironment and whether they contribute to or inhibit tumorigenesis. To address this question in an unbiased and genome-wide manner, we applied high-resolution DNA copy number analysis to murine stromal DNA isolated from human xenograft tumors that were formed in immunodeficient mice. We show that numerous amplifications and deletions are found within the host stromal microenvironment, suggesting that alterations in host DNA copy number can occur and may play a significant role in modifying tumor-stromal interactions.


Assuntos
DNA/genética , Dosagem de Genes/genética , Neoplasias/genética , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Genoma/genética , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Células Estromais/metabolismo
17.
Mol Cancer Ther ; 5(11): 2914-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17121939

RESUMO

Neoadjuvant treatment offers an opportunity to correlate molecular variables to treatment response and to explore mechanisms of drug resistance in vivo. Here, we present a statistical analysis of large-scale gene expression patterns and their relationship to response following neoadjuvant chemotherapy in locally advanced breast cancers. We analyzed cDNA expression data from 81 tumors from two patient series, one treated with doxorubicin alone (51) and the other treated with 5-fluorouracil and mitomycin (30), and both were previously studied for correlations between TP53 status and response to therapy. We observed a low frequency of progressive disease within the luminal A subtype from both series (2 of 36 versus 13 of 45 patients; P = 0.0089) and a high frequency of progressive disease among patients with luminal B type tumors treated with doxorubicin (5 of 8 patients; P = 0.0078); however, aside from these two observations, no other consistent associations between response to chemotherapy and tumor subtype were observed. These specific associations could possibly be explained by covariance with TP53 mutation status, which also correlated with tumor subtype. Using supervised analysis, we could not uncover a gene profile that could reliably (>70% accuracy and specificity) predict response to either treatment regimen.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Perfilação da Expressão Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibióticos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/genética , Doxorrubicina/farmacologia , Feminino , Fluoruracila/farmacologia , Humanos , Pessoa de Meia-Idade , Mitomicina/farmacologia , Terapia Neoadjuvante , Análise de Sequência com Séries de Oligonucleotídeos , Estudos Prospectivos , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Genetics ; 174(1): 519-23, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16816424

RESUMO

We examined mismatch repair (MMR)-defective diploid strains of budding yeast grown for approximately 160 generations to determine whether decreases in spore viability due to the uncovering of recessive lethal mutations correlated with an increase in gross chromosomal rearrangements (GCRs). No GCRs were detected despite dramatic decreases in spore viability, suggesting that frameshift and/or other unrepaired DNA replication lesions play a greater role than chromosomal instability in decreasing viability in MMR-defective strains.


Assuntos
Pareamento Incorreto de Bases/genética , Aberrações Cromossômicas , Proteínas Fúngicas/genética , Mutação/fisiologia , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras de Transdução de Sinal , Sobrevivência Celular/genética , Mutação da Fase de Leitura/fisiologia , Rearranjo Gênico/fisiologia , Genes Letais/fisiologia , Genes Recessivos/fisiologia , Modelos Biológicos , Proteína 1 Homóloga a MutL , Hibridização de Ácido Nucleico/métodos , Probabilidade , Proteínas de Saccharomyces cerevisiae
19.
PLoS Genet ; 2(1): e11, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16415983

RESUMO

The subcellular localization of proteins is critical to their biological roles. Moreover, whether a protein is membrane-bound, secreted, or intracellular affects the usefulness of, and the strategies for, using a protein as a diagnostic marker or a target for therapy. We employed a rapid and efficient experimental approach to classify thousands of human gene products as either "membrane-associated/secreted" (MS) or "cytosolic/nuclear" (CN). Using subcellular fractionation methods, we separated mRNAs associated with membranes from those associated with the soluble cytosolic fraction and analyzed these two pools by comparative hybridization to DNA microarrays. Analysis of 11 different human cell lines, representing lymphoid, myeloid, breast, ovarian, hepatic, colon, and prostate tissues, identified more than 5,000 previously uncharacterized MS and more than 6,400 putative CN genes at high confidence levels. The experimentally determined localizations correlated well with in silico predictions of signal peptides and transmembrane domains, but also significantly increased the number of human genes that could be cataloged as encoding either MS or CN proteins. Using gene expression data from a variety of primary human malignancies and normal tissues, we rationally identified hundreds of MS gene products that are significantly overexpressed in tumors compared to normal tissues and thus represent candidates for serum diagnostic tests or monoclonal antibody-based therapies. Finally, we used the catalog of CN gene products to generate sets of candidate markers of organ-specific tissue injury. The large-scale annotation of subcellular localization reported here will serve as a reference database and will aid in the rational design of diagnostic tests and molecular therapies for diverse diseases.


Assuntos
Membrana Celular/genética , Genoma Humano , RNA Mensageiro/genética , Análise de Sequência de DNA/métodos , Biomarcadores Tumorais/metabolismo , Núcleo Celular/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Citosol/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Sinais Direcionadores de Proteínas , Distribuição Tecidual
20.
Proc Natl Acad Sci U S A ; 102(16): 5814-9, 2005 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-15827123

RESUMO

Glioblastoma multiforme (GBM) is the most common form of malignant glioma, characterized by genetic instability, intratumoral histopathological variability, and unpredictable clinical behavior. We investigated global gene expression in surgical samples of brain tumors. Gene expression profiling revealed large differences between normal brain samples and tumor tissues and between GBMs and lower-grade oligodendroglial tumors. Extensive differences in gene expression were found among GBMs, particularly in genes involved in angiogenesis, immune cell infiltration, and extracellular matrix remodeling. We found that the gene expression patterns in paired specimens from the same GBM invariably were more closely related to each other than to any other tumor, even when the paired specimens had strikingly divergent histologies. Survival analyses revealed a set of approximately 70 genes more highly expressed in rapidly progressing tumors that stratified GBMs into two groups that differed by >4-fold in median duration of survival. We further investigated one gene from the group, FABP7, and confirmed its association with survival in two unrelated cohorts totaling 105 patients. Expression of FABP7 enhanced the motility of glioma-derived cells in vitro. Our analyses thus identify and validate a prognostic marker of both biologic and clinical significance and provide a series of putative markers for additional evaluation.


Assuntos
Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica , Glioblastoma/classificação , Glioblastoma/genética , Neoplasias Encefálicas/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Movimento Celular , Proliferação de Células , Biologia Computacional , Proteína 7 de Ligação a Ácidos Graxos , Glioblastoma/patologia , Humanos , Hipóxia/genética , Análise de Sequência com Séries de Oligonucleotídeos , Taxa de Sobrevida , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA