Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 93(6): 146, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26559679

RESUMO

The antiviral activity of interferon (IFN) increases in uterine vein serum (UVS) during early pregnancy in sheep. This antiviral activity in UVS collected on Day 15 of pregnancy is blocked by anti-IFN-tau (anti-IFNT) antibodies. Conceptus-derived IFNT was hypothesized to induce IFN-stimulated gene (ISG) expression in endometrium and extrauterine tissues during pregnancy. To test this hypothesis, blood was collected from ewes on Days 12-16 of the estrous cycle or pregnancy. Serum progesterone was >1.7 ng/ml in pregnant (P) and nonpregnant (NP) ewes until Day 13, then declined to <0.6 ng/ml by Day 15 in NP ewes. A validated IFNT radioimmunoassay detected IFNT in uterine flushings (UFs) on Days 13-16 and in UVS on Days 15-16 of pregnancy. IFNT detection in UF correlated with paracrine induction of ISGs in the endometrium and occurred prior to the inhibition of estrogen receptor 1 and oxytocin receptor expression in uterine epithelia on Day 14 of pregnancy. Induction of ISG mRNAs in corpus luteum (CL) and liver tissue occurred by Day 14 and in peripheral blood mononuclear cells by Day 15 in P ewes. Expression of mRNAs for IFN signal transducers and ISGs were greater in the CL of P than that of NP ewes on Day 14. It is concluded that: 1) paracrine actions of IFNT coincide with detection of IFNT in UF; 2) endocrine action of IFNT ensues through induction of ISGs in peripheral tissues; and 3) IFNT can be detected in UVS, but not until Days 15-16 of pregnancy, which may be limited by the sensitivity of the IFNT radioimmunoassay.


Assuntos
Corpo Lúteo/metabolismo , Endométrio/metabolismo , Interferon Tipo I/metabolismo , Proteínas da Gravidez/metabolismo , Animais , Receptor alfa de Estrogênio/metabolismo , Ciclo Estral/metabolismo , Feminino , Leucócitos Mononucleares/metabolismo , Gravidez , Progesterona/metabolismo , Receptores de Ocitocina/metabolismo , Ovinos
2.
Biol Reprod ; 88(6): 144, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23616594

RESUMO

Paracrine release of ovine interferon tau (oIFNT) from the conceptus alters release of endometrial prostaglandin F2 alpha (PGF) and prevents luteolysis. Endocrine release of oIFNT into the uterine vein occurs by Day 15 of pregnancy and may impart resistance of the corpus luteum (CL) to PGF. It was hypothesized that infusion of recombinant oIFNT (roIFNT) into the uterine or jugular veins on Day 10 of the estrous cycle would protect the CL against exogenous PGF-induced luteolysis. Osmotic pumps were surgically installed in 24 ewes to deliver bovine serum albumin (BSA; n = 12) or roIFNT (200 µg/day; n = 12) for 24 h into the uterine vein. Six ewes in each treatment group received a single injection of PGF (4 mg/58 kg body weight) 12 h after pump installation. In a second experiment, BSA or roIFNT was delivered at 20 or 200 µg/day into the uterine vein or 200 µg/day into the jugular vein for 72 h in 30 ewes. One half of these ewes received an injection of PGF 24 h after pump installation. Concentrations of progesterone in serum declined in BSA-treated ewes injected with PGF, but were sustained in all ewes infused with 20 µg/day of roIFNT into the uterine vein and 200 µg of roIFNT into the jugular vein followed 24 h later with injection of PGF. All concentrations of roIFNT and modes of delivery (uterine or jugular vein) increased luteal concentrations of IFN-stimulated gene (i.e., ISG15) mRNA. Infusion of 200 µg of IFNT over 24 h induced greater mRNA concentrations for cell survival genes, such as BCL2-like 1 (BCL2L1 or Bcl-xL), serine/threonine kinase (AKT), and X-linked inhibitor of apoptosis (XIAP) and decreased prostaglandin F receptor (PTGFR) mRNA concentrations, when compared to controls. It is concluded that endocrine delivery of roIFNT, regardless of route (uterine or jugular vein), effectively protects CL from the luteolytic actions of PGF by mechanisms that involve ISGs and stabilization of cell survival genes.


Assuntos
Corpo Lúteo/efeitos dos fármacos , Dinoprosta/farmacologia , Ciclo Estral/efeitos dos fármacos , Interferon Tipo I/farmacologia , Luteólise/efeitos dos fármacos , Proteínas da Gravidez/farmacologia , Animais , Corpo Lúteo/metabolismo , Endométrio/irrigação sanguínea , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Ciclo Estral/metabolismo , Feminino , Luteólise/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Progesterona/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Ovinos , Útero/irrigação sanguínea , Útero/efeitos dos fármacos , Útero/metabolismo
3.
Cell Tissue Res ; 342(1): 117-30, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20848132

RESUMO

Our objectives were to evaluate kinase insert domain protein receptor (KDR)-ß-galactosidase (LacZ) expression as a marker for vascular development during gonadal morphogenesis and to determine whether any novel non-angiogenic KDR-LacZ expression was present in mouse testes or ovaries. Gonads were collected from mice expressing LacZ driven by the Kdr promoter (KDR-LacZ) from embryonic day 11 (E11) through postnatal day 60 (P60). At E11.5, mesonephric cells expressing KDR-LacZ seemed to migrate into the developing testis and surrounded developing seminiferous cords. Cells expressing KDR-LacZ appeared in the ovary with no apparent migration from the adjacent mesonephros, suggesting a different origin of endothelial cells. Testis organ cultures from E11 mice were treated with 8 µM VEGFR-TKI, a vascular endothelial growth factor A signal transduction inhibitor; subsequently, the amount of KDR-LacZ staining was reduced by 66%-99% (P<0.002), and the ability of KDR-expressing cells to form a densely organized vascular network was inhibited. Novel non-angiogenic KDR-LacZ staining was detected in the testis on specific subsets of germ cells at E16, E17, P4, P20, P30, and P60. In ovaries, staining was present on oocytes within oocyte cysts at E17 and within late secondary follicles of postnatal mice. Thus, KDR is an excellent marker for analyzing vascular development in the gonads. Inhibition of VEGFA signal transduction prevents the development of testis-specific vasculature. Furthermore, non-vascular KDR-LacZ staining suggests that KDR directly affects both spermatogenesis and somatic-oocyte interactions during gametogenesis.


Assuntos
Movimento Celular/fisiologia , Folículo Ovariano , Testículo , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , beta-Galactosidase , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Oócitos/citologia , Oócitos/metabolismo , Folículo Ovariano/irrigação sanguínea , Folículo Ovariano/citologia , Folículo Ovariano/embriologia , Espermatogênese/fisiologia , Testículo/irrigação sanguínea , Testículo/citologia , Testículo/embriologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Reproduction ; 140(2): 319-29, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20457593

RESUMO

Vascular endothelial growth factor A (VEGFA) plays a role in both angiogenesis and seminiferous cord formation, and alternative splicing of the Vegfa gene produces both proangiogenic isoforms and antiangiogenic isoforms (B-isoforms). The objectives of this study were to evaluate the expression of pro- and antiangiogenic isoforms during testis development and to determine the role of VEGFA isoforms in testis morphogenesis. Quantitative RT-PCR determined that Vegfa_165b mRNA was most abundant between embryonic days 13.5 and 16 (E13.5 and 16; P<0.05). Compared with ovarian mRNA levels, Vegfa_120 was more abundant at E13-14 (P<0.05), Vegfa_164 was less abundant at E13 (P<0.05), and Vegfa_165b tended to be less abundant at E13 (P<0.09) in testes. Immunohistochemical staining localized antiangiogenic isoforms to subsets of germ cells at E14-16, and western blot analysis revealed similar protein levels for VEGFA_165B, VEGFA_189B, and VEGFA_206B at this time point. Treatment of E13 organ culture testes with VEGFA_120, VEGFA_164, and an antibody to antiangiogenic isoforms (anti-VEGFAxxxB) resulted in less organized and defined seminiferous cords compared with paired controls. In addition, 50 ng/ml VEGFA_120 and VEGFA_164 treatments increased vascular density in cultured testes by 60 and 48% respectively, and treatment with VEGFAxxxB antibody increased vascular density by 76% in testes (0.5 ng/ml) and 81% in ovaries (5 ng/ml) compared with controls (P<0.05). In conclusion, both pro- and antiangiogenic VEGFA isoforms are involved in the development of vasculature and seminiferous cords in rat testes, and differential expression of these isoforms may be important for normal gonadal development.


Assuntos
Ovário/embriologia , Testículo/irrigação sanguínea , Testículo/embriologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Processamento Alternativo , Animais , Western Blotting , Feminino , Imuno-Histoquímica , Masculino , Neovascularização Fisiológica/fisiologia , Isoformas de Proteínas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia
5.
Biol Reprod ; 82(2): 282-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19812299

RESUMO

There is increasing evidence that the corpus luteum has an important role in regulating its own demise. A series of experiments was performed to study the effects of luteal concentrations of progesterone on the functions of steroidogenic luteal cells. In the first experiment, steroidogenic small luteal cells (SLCs) were separated from endothelial cells, and it was determined that it was the SLCs that contained receptors for oxytocin. Treatment with progesterone (95 muM) for as little as 1 h decreased (P < 0.05) the percentage of SLCs responding to oxytocin (10 muM) with an increase in intracellular concentrations of calcium, and this effect continued for the duration of the experiment. In a second experiment, the response to oxytocin was increased (P < 0.05) by 3 h (but not 1 h) following progesterone removal, with a further increase by 16 h. The ability of 1 muM prostaglandin F(2 alpha) (PGF(2 alpha)) to increase intracellular concentrations of calcium was also decreased (P < 0.05) by progesterone treatment. By 3 h following removal of progesterone, the percentage of steroidogenic large luteal cells (LLCs) responding to PGF(2 alpha) was increased and not different from that observed in cells 16 h after progesterone removal. Finally, cyclodextrins (methyl-beta cyclodextrin [M beta CD]) were used to remove cholesterol from the plasma membrane of luteal cells, and M beta CD loaded with cholesterol was used to put cholesterol back into the plasma membrane of progesterone-treated cells. Treatment with M beta CD reduced (P < 0.05) the responsiveness of SLCs to oxytocin and LLCs to PGF(2 alpha). Use of cholesterol-loaded M beta CD returned the responsiveness of both SLCs and LLCs treated with progesterone to that observed in vehicle (no progesterone)-treated controls. In summary, intraluteal concentrations of progesterone inhibit the ability of oxytocin to increase intracellular concentrations of calcium in SLCs and the ability of PGF(2 alpha) to increase intracellular concentrations of calcium in LLCs. The highest concentration of progesterone appears to act by influencing cholesterol content of the luteal cell membranes.


Assuntos
Cálcio/análise , Dinoprosta/antagonistas & inibidores , Células Lúteas/química , Ocitocina/antagonistas & inibidores , Progesterona/administração & dosagem , Ovinos , Animais , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Colesterol/administração & dosagem , Colesterol/análise , Dinoprosta/farmacologia , Feminino , Imuno-Histoquímica , Células Lúteas/efeitos dos fármacos , Células Lúteas/ultraestrutura , Ocitocina/farmacologia , Espectrometria de Fluorescência , beta-Ciclodextrinas/farmacologia
6.
Biol Reprod ; 75(1): 56-67, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16672722

RESUMO

Morphological male sex determination is dependent on migration of endothelial and preperitubular cells from the adjacent mesonephros into the developing testis. Our hypothesis is that VEGFA and its receptor KDR are necessary for both testicular cord formation and neovascularization. The Vegfa gene has 8 exons with many splice variants. Vegfa120, Vegfa164, and Vegfa188 mRNA isoforms were detected on Embryonic Day (E) 13.5 (plug date=E0) in the rat. Vegfa120, Vegfa144, Vegfa164, Vegfa188, and Vegfa205 mRNA were detected at E18 and Postnatal Day 3 (P3). Kdr mRNA was present on E13.5, whereas Fms-like tyrosine kinase 1 receptor (Flt1) mRNA was not detected until E18. VEGFA protein was localized to Sertoli cells at cord formation and KDR to germ and interstitial cells. The VEGFA signaling inhibitors SU1498 (40 microM) and VEGFR-TKI (8 microM) inhibited cord formation in E13 testis cultures with 90% reduced vascular density (P<0.01) in VEGFR-TKI-treated organs. Furthermore, Je-11 (10 microM), an antagonist to VEGFA, also perturbed cord formation and inhibited vascular density by more than 50% (P<0.01). To determine signal transduction pathways involved in VEGFA's regulation of testis morphogenesis, E13 testis were treated with LY 294002 (15 microM), a phosphoinositide 3-kinase (PI3K) pathway inhibitor, resulting in inhibition of both vascular density (46%) and cord formation. Thus, we support our hypothesis and conclude that VEGFA, secreted by the Sertoli cell, is involved in both neovascularization and cord formation and potentially acts through the PI3K pathway during testis morphogenesis to elicit its effects.


Assuntos
Neovascularização Fisiológica , Testículo/embriologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Animais , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Masculino , Morfogênese/efeitos dos fármacos , Morfolinas/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Inibidores de Fosfoinositídeo-3 Quinase , Isoformas de Proteínas , Ratos , Túbulos Seminíferos/embriologia , Transdução de Sinais , Testículo/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
7.
Domest Anim Endocrinol ; 28(2): 147-61, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15713363

RESUMO

To provide insight into potential mechanisms contributing to the various biological responses of cattle to treatment with progesterone, norgestomet, and melengestrol acetate (MGA), MCF-7 cells were utilized to determine the relative binding affinity of the progesterone receptor for MGA, norgestomet, progesterone, and a progesterone agonist (R5020), and to determine if progesterone, MGA, or norgestomet have estrogenic and/or anti-estrogenic activities. The progesterone receptor had greater affinity (P<0.05) for MGA, R5020, and norgestomet than for progesterone; and the affinity for norgestomet exceeded (P<0.05) that of MGA and R5020. Estrogen stimulates proliferation of MCF-7 cells; therefore these cells have been utilized as a bioassay to detect estrogenic and anti-estrogenic activity. Progesterone (10(-11) to 10(-5)M) did not promote cellular proliferation. However, MGA (10(-8), 10(-7), and 10(-6)M) increased (P<0.05) cell proliferation compared to the control group (10(-11) to 10(-9) and 10(-5)M MGA did not stimulate cell proliferation), and MGA-induced cell proliferation (10(-8)M) was reduced (P=0.095) by an estradiol antagonist (ICI 182,780; ICI). Cellular proliferation increased (P<0.05) with norgestomet (10(-5)M) compared to the control group (10(-11) to 10(-6)M norgestomet did not stimulate cell proliferation) and the increased proliferation was decreased (P<0.05) by ICI. Neither progesterone nor MGA demonstrated anti-estrogenic activity. Norgestomet (10(-10) to 10(-6)M) did reduce (P<0.05) maximal estrogen-stimulated cell proliferation, but not to basal levels. In summary, the affinities of the progesterone receptor for norgestomet, MGA, and progesterone are consistent with their effective dose to inhibit ovulation in vivo, but their progestin and their estrogenic/anti-estrogenic activities cannot fully explain why progesterone and norgestomet are more capable of reprogramming the reproductive axis in anestrous postpartum cows compared to MGA.


Assuntos
Bovinos/fisiologia , Estradiol/análogos & derivados , Acetato de Melengestrol/farmacologia , Progestinas/farmacologia , Animais , Ligação Competitiva , Neoplasias da Mama , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estradiol/farmacologia , Moduladores de Receptor Estrogênico/farmacologia , Estrogênios/fisiologia , Feminino , Fulvestranto , Antagonistas de Hormônios/farmacologia , Humanos , Concentração Inibidora 50 , Acetato de Melengestrol/metabolismo , Pregnenodionas/farmacologia , Progesterona/farmacologia , Promegestona/farmacologia , Receptores de Progesterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA