Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Nutrients ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337615

RESUMO

Atherosclerosis and resulting cardiovascular disease are the leading causes of death in the US. Hyperhomocysteinemia (HHcy), or the accumulation of the intermediate amino acid homocysteine, is an independent risk factor for atherosclerosis, but the intricate biological processes mediating this effect remain elusive. Several factors regulate homocysteine levels, including the activity of several enzymes and adequate levels of their coenzymes, including pyridoxal phosphate (vitamin B6), folate (vitamin B9), and methylcobalamin (vitamin B12). To better understand the biological influence of HHcy on the development and progression of atherosclerosis, apolipoprotein-E-deficient (apoE-/- mice), a model for human atherosclerosis, were fed a hyperhomocysteinemic diet (low in methyl donors and B vitamins) (HHD) or a control diet (CD). After eight weeks, the plasma, aorta, and liver were collected to quantify methylation metabolites, while plasma was also used for a broad targeted metabolomic analysis. Aortic plaque burden in the brachiocephalic artery (BCA) was quantified via 14T magnetic resonance imaging (MRI). A severe accumulation of plasma and hepatic homocysteine and an increased BCA plaque burden were observed, thus confirming the atherogenic effect of the HHD. Moreover, a decreased methylation capacity in the plasma and aorta, indirectly assessed by the ratio of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) was detected in HHD mice together with a 172-fold increase in aortic cystathionine levels, indicating increased flux through the transsulfuration pathway. Betaine and its metabolic precursor, choline, were significantly decreased in the livers of HHD mice versus CD mice. Widespread changes in the plasma metabolome of HHD mice versus CD animals were detected, including alterations in acylcarnitines, amino acids, bile acids, ceramides, sphingomyelins, triacylglycerol levels, and several indicators of dysfunctional lipid metabolism. This study confirms the relevance of severe HHcy in the progression of vascular plaque and suggests novel metabolic pathways implicated in the pathophysiology of atherosclerosis.


Assuntos
Aterosclerose , Hiper-Homocisteinemia , Camundongos , Animais , Humanos , Aterosclerose/metabolismo , Dieta , S-Adenosilmetionina/metabolismo , Ácido Fólico/efeitos adversos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Metaboloma , Homocisteína/metabolismo , Apolipoproteínas/metabolismo
2.
Mol Nutr Food Res ; 68(5): e2300355, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327171

RESUMO

SCOPE: Disturbances in one-carbon metabolism contribute to nonalcoholic fatty liver disease (NAFLD) which encompasses steatosis, steatohepatitis, fibrosis, and cirrhosis. The goal is to examine impact of folate deficiency and the Mthfr677C >T variant on NAFLD. METHODS AND RESULTS: This study uses the new Mthfr677C >T mouse model for the human MTHFR677C >T variant. Mthfr677CC and Mthfr677TT mice were fed control diet (CD) or folate-deficient (FD) diets for 4 months. FD and Mthfr677TT alter choline/methyl metabolites in liver and/or plasma (decreased S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio, methyltetrahydrofolate, and betaine; increased homocysteine [Hcy]). FD, with contribution from Mthfr677TT, provokes fibrosis in males. Studies of normal livers reveal alterations in plasma markers and gene expression that suggest an underlying predisposition to fibrosis induced by FD and/or Mthfr677TT in males. These changes are absent or reverse in females, consistent with the sex disparity of fibrosis. Sex-based differences in methylation potential, betaine, sphingomyelin, and trimethylamine-N-oxide (TMAO) levels may prevent fibrogenesis in females. In contrast, Mthfr677TT alters choline metabolism, dysregulates expression of lipid metabolism genes, and promotes steatosis in females. CONCLUSION: This study suggests that folate deficiency predisposes males to fibrosis, which is exacerbated by Mthfr677TT, whereas Mthfr677TT predisposes females to steatosis, and reveal novel contributory mechanisms for these NAFLD-related disorders.


Assuntos
Deficiência de Ácido Fólico , Hepatopatia Gordurosa não Alcoólica , Masculino , Humanos , Feminino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Betaína , Deficiência de Ácido Fólico/metabolismo , Ácido Fólico , Metilenotetra-Hidrofolato Redutase (NADPH2) , Genótipo , Cirrose Hepática/etiologia , S-Adenosilmetionina , Colina/metabolismo , Homocisteína
3.
J Nutr Biochem ; 126: 109562, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176626

RESUMO

Ketogenic diets (KDs) are very high-fat low-carbohydrate diets that promote nutritional ketosis and are widely used for weight loss, although concerns about potential adverse cardiovascular effects remain. We investigated a very high-fat KD's vascular impact and plasma metabolic signature compared to a non-ketogenic high-fat diet (HFD). Apolipoprotein E deficient (ApoE -/-) mice were fed a KD (%kcal:81:1:18, fat/carbohydrate/protein), a non-ketogenic high-fat diet with half of the fat content (HFD) (%kcal:40:42:18, fat/carbohydrate/protein) for 12 weeks. Plasma samples were used to quantify the major ketone body beta-hydroxybutyrate (BHB) and several pro-inflammatory cytokines (IL-6, MCP-1, MIP-1alpha, and TNF alpha), and to targeted metabolomic profiling by mass spectrometry. In addition, aortic atherosclerotic lesions were quantified ex-vivo by magnetic resonance imaging (MRI) on a 14-tesla system. KD was atherogenic when compared to the control diet, but KD mice, when compared to the HFD group (1) had markedly higher levels of BHB and lower levels of cytokines, confirming the presence of ketosis that alleviated the well-established fat-induced systemic inflammation; (2) displayed significant changes in the plasma metabolome that included a decrease in lipophilic metabolites and an increase in hydrophilic metabolites; (3) had significantly lower levels of several atherogenic lipid metabolites, including phosphatidylcholines, cholesterol esters, sphingomyelins, and ceramides; and (4) presented significantly lower aortic plaque burden. KD was atherogenic and was associated with specific metabolic changes but alleviated the fat-induced inflammation and lessened the progression of atherosclerosis when compared to the HFD.


Assuntos
Aterosclerose , Cetose , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Aterosclerose/etiologia , Aterosclerose/patologia , Inflamação/metabolismo , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Metaboloma
4.
Nutr Metab Cardiovasc Dis ; 34(2): 475-484, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37949707

RESUMO

BACKGROUND AND AIMS: Participation in a healthy lifestyle intervention such as the Diabetes Prevention Program Group Lifestyle Balance-adapted for stroke (GLB-CVA) may reduce stroke burden. Identifying biomarkers associated with lifestyle changes may enhance an individualized approach to stroke recovery. We investigated metabolic biomarkers related to cardiovascular and neurological function in individuals with stroke in the GLB-CVA study and healthy (non-stroke) individuals. METHODS AND RESULTS: Participants with chronic (>12 months) stroke were recruited to this wait-list randomized controlled trial if they were overweight (BMI ≥25 kg/m2). Participants were randomized to (1) the GLB-CVA program to complete 22 educational sessions addressing behavioral principals of dietary and physical activity or (2) a 6 month wait-list control (WLC). Biomarkers [Plasma irisin, vascular endothelial growth factor, lipoprotein-associated phospholipase A2 (Lp-PLA2), insulin-like growth factor 1 and brain-derived neurotrophic factor (BDNF)] were collected at baseline, 3, and 6 months. Age-matched healthy individuals were recruited for biomarker assessment. Compared to healthy adults (n = 19), participants with stroke (GLB-CVA = 24; WLC = 24) at baseline had higher tHcy levels (p < 0.001) and lower PLA2 levels (p = 0.016). No statistically significant interactions were observed for any biomarkers between the GLB-CVA and WLC or between people who achieved 5% weight loss and those who did not. CONCLUSION: Participation in a 6-month healthy lifestyle program did not result in statistically significant changes to select metabolic biomarker levels for our participants with chronic stroke. However, participants with stroke demonstrated a unique biomarker profile compared to age-matched healthy individuals.


Assuntos
Acidente Vascular Cerebral , Fator A de Crescimento do Endotélio Vascular , Adulto , Humanos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/prevenção & controle , Estilo de Vida Saudável , Estilo de Vida , Biomarcadores
5.
Neural Regen Res ; 18(11): 2443-2448, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37282475

RESUMO

Maternal one-carbon metabolism plays an important role in early life programming. There is a well-established connection between the fetal environment and the health status of the offspring. However, there is a knowledge gap on how maternal nutrition impacts stroke outcomes in offspring. The aim of our study was to investigate the role of maternal dietary deficiencies in folic acid or choline on stroke outcomes in 3-month-old offspring. Adult female mice were fed a folic acid-deficient diet, choline-deficient diet, or control diet 4 weeks before pregnancy. They were continued on diets during pregnancy and lactation. Male and female offspring were weaned onto a control diet and at 2 months of age were subjected to ischemic stroke within the sensorimotor cortex via photothrombotic damage. Mothers maintained on either a folic acid-deficient diet or choline-deficient diet had reduced levels of S-adenosylmethionine in the liver and S-adenosylhomocysteine in the plasma. After ischemic stroke, motor function was impaired in 3-month-old offspring from mothers receiving either a folic acid-deficient diet or choline-deficient diet compared to the animals receiving a control diet. In brain tissue, there was no difference in ischemic damage volume. When protein levels were assessed in ischemic brain tissue, there were lower levels of active caspase-3 and hypoxia-inducible factor 1α in males compared to females and betaine levels were reduced in offspring from the mothers receiving a choline-deficient diet. Our results demonstrate that a deficient maternal diet at critical time points in neurodevelopment results in worse stroke outcomes. This study emphasizes the importance of maternal diet and the impact it can have on offspring health.

6.
Nutrients ; 15(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678154

RESUMO

Breastfeeding is the gold standard for early nutrition. Metabolites from the one-carbon metabolism pool are crucial for infant development. The aim of this study is to compare the breast-milk one-carbon metabolic profile to other biofluids where these metabolites are present, including cord and adult blood plasma as well as cerebrospinal fluid. Breast milk (n = 142), cord blood plasma (n = 23), maternal plasma (n = 28), aging adult plasma (n = 91), cerebrospinal fluid (n = 92), and infant milk formula (n = 11) samples were analyzed by LC-MS/MS to quantify choline, betaine, methionine, S-adenosylmethionine, S-adenosylhomocysteine, total homocysteine, and cystathionine. Differences between groups were visualized by principal component analysis and analyzed by Kruskal-Wallis test. Correlation analysis was performed between one-carbon metabolites in human breast milk. Principal component analysis based on these metabolites separated breast milk samples from other biofluids. The S-adenosylmethionine (SAM) concentration was significantly higher in breast milk compared to the other biofluids and was absent in infant milk formulas. Despite many significant correlations between metabolites in one-carbon metabolism, there were no significant correlations between SAM and methionine or total homocysteine. Together, our data indicate a high concentration of SAM in breast milk, which may suggest a strong demand for this metabolite during infant early growth while its absence in infant milk formulas may indicate the inadequacy of this vital metabolic nutrient.


Assuntos
Leite Humano , S-Adenosilmetionina , Adulto , Criança , Lactente , Feminino , Humanos , S-Adenosilmetionina/metabolismo , Cromatografia Líquida , Leite Humano/metabolismo , Carbono , Espectrometria de Massas em Tandem , Metionina/metabolismo , Racemetionina , S-Adenosil-Homocisteína/metabolismo , Homocisteína
7.
Alzheimers Dement (N Y) ; 8(1): e12368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36514441

RESUMO

Introduction: Vascular contributions to cognitive impairment and dementia (VCID) are a leading cause of dementia. An underappreciated, modifiable risk factor for VCID is hyperhomocysteinemia (HHcy), defined by elevated levels of plasma homocysteine, most often due to impaired B vitamin absorption in aged persons. Studies aimed at identifying neuropathologic features and gene expression profiles associated with HHcy have been lacking. Methods: A subset of research volunteers from the University of Kentucky Alzheimer's Disease Research Center longitudinal cohort came to autopsy and had ante mortem plasma homocysteine levels available. Brain tissue and blood plasma drawn closest to death were used to measure homocysteine and related metabolites in the current pilot study. Genetic expression profiles of inflammatory markers were evaluated using the Human Neuroinflammation NanoString panel. Further analyses included an evaluation of plasma homocysteine effects on amyloid beta, tau, ionized calcium-binding adaptor molecule 1, and glial fibrillary acidic protein immunohistochemistry in the frontal and occipital cortices. Analytes and other study outcomes were evaluated in relation to ante mortem HHcy status: We identified 13 persons with normal ante mortem plasma homocysteine levels (<14 µmol/L) and 18 who had high plasma homocysteine levels (≥14 µmol/L). Results: Participants with HHcy demonstrated increased levels of several plasma homocysteine cycle metabolites such as total cysteine, S-adenosyl-homocysteine, cystathionine, and choline. Inflammatory gene expression profiles showed a general downregulation in the setting of elevated plasma homocysteine. HHcy was associated with more and longer microglial processes, but smaller and fewer astrocytes, especially in participants of older age at death. HHcy in older participants was also associated with occipital cortex microhemorrhages and increased severity of atherosclerosis throughout the cerebral vasculature. Conclusions: Increased plasma homocysteine and older age were associated with the downregulation of inflammatory gene expression markers in association with significant glial and vascular pathology changes. Impaired immune function is a plausible mechanism by which HHcy increases cerebrovascular damage leading to impaired cognitive function.

8.
Methods Mol Biol ; 2546: 35-43, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127576

RESUMO

We describe a simple stable isotope dilution method for accurate determination of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) in plasma as a clinical diagnostic test. Determination of SAM/SAH in plasma (20 µL) was performed by high-performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Calibrators (SAM and SAH) and internal standards (2H3-SAM and 2H4-SAH) were included in each analytical run for calibration. Sample preparation involved combining 20 µL sample with 180 µL of internal standard solution consisting of heavy-isotope-labeled internal standards in mobile phase A and filtering by ultracentrifugation through a 10 kd MW cutoff membrane. Sample filtrate (3 µL) was injected by a Shimadzu Nexera LC System interfaced with a 5500 QTRAP® (Sciex). Chromatographic separation was achieved on a 250 mm × 2.0 mm EZ-faast column from Phenomenex. Samples were eluted at a flow rate of 0.20 mL/min with a binary gradient with a total run time of 10 min. The source operated in positive ion mode at an ion spray voltage of +5000 V. SAM and SAH resolved by a gradient to 100% methanol with retention times of 5.8 and 5.5 min, respectively. HPLC chromatographic conditions did not produce complete separation of SAM and SAH, but they were completely discerned by their different fragmentation pattern in the mass spectrometer working in the MS-MS mode. The observed m/z values of the fragment ions were m/z 399→250 for SAM, m/z 385→136 for SAH, m/z 402→250 for 2H3-SAM, and m/z 203→46. The calibration curve was linear over the range of 12.5-5000 nmol/L for SAM and SAH.


Assuntos
S-Adenosilmetionina , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Metanol , S-Adenosil-Homocisteína , Espectrometria de Massas em Tandem/métodos
9.
Nutrients ; 14(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35276958

RESUMO

Disruptions in one-carbon metabolism and elevated homocysteine have been previously implicated in the development of dementia associated with Alzheimer's disease (AD) and Parkinson's disease (PD). Moreover, a PD diagnosis itself carries substantial risk for the development of dementia. This is the first study that explores alterations in one-carbon metabolism in AD and PD directly in the human brain frontal cortex, the primary center of cognition. Applying targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS), we analyzed post-mortem samples obtained from 136 subjects (35 AD, 65 PD, 36 controls). We found changes in one-carbon metabolites that indicate inefficient activation of cystathionine ß-synthase (CBS) in AD and PD subjects with dementia, the latter seemingly accompanied by a restricted re-methylation flow. Levodopa-carbidopa is known to reduce available vitamin B6, which would explain the hindered CBS activity. We present evidence of temporary non-protein-bound homocysteine accumulation upon levodopa intake in the brain of PD subjects with dementia but not in non-demented PD subjects. Importantly, this homocysteine elevation is not related to levodopa dosage, disease progression, or histopathological markers but exclusively to the dementia status. We hypothesize that this levodopa-induced effect is a direct cause of dementia in PD in susceptible subjects with reduced re-methylation capacity. Furthermore, we show that betaine best correlates with cognitive score even among PD subjects alone and discuss nutritional recommendations to improve one-carbon metabolism function.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Doença de Alzheimer/psicologia , Encéfalo , Cromatografia Líquida , Humanos , Espectrometria de Massas em Tandem
10.
EBioMedicine ; 75: 103791, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35030356

RESUMO

BACKGROUND: Kwashiorkor is a childhood syndrome of edematous malnutrition. Its precise nutritional precipitants remain uncertain despite nine decades of study. Remarkably, kwashiorkor's disturbances resemble the effects of experimental diets that are deficient in one-carbon nutrients. This similarity suggests that kwashiorkor may represent a nutritionally mediated syndrome of acute one-carbon metabolism dysfunction. Here we report findings from a cross-sectional exploration of serum one-carbon metabolites in Malawian children. METHODS: Blood was collected from children aged 12-60 months before nutritional rehabilitation: kwashiorkor (N = 94), marasmic-kwashiorkor (N = 43) marasmus (N = 118), moderate acute malnutrition (N = 56) and controls (N = 46). Serum concentrations of 16 one-carbon metabolites were quantified using LC/MS techniques, and then compared across participant groups. FINDINGS: Twelve of 16 measured one-carbon metabolites differed significantly between participant groups. Measured outputs of one-carbon metabolism, asymmetric dimethylarginine (ADMA) and cysteine, were lower in marasmic-kwashiorkor (median µmol/L (± SD): 0·549 (± 0·217) P = 0·00045 & 90 (± 40) P < 0·0001, respectively) and kwashiorkor (0·557 (± 0·195) P < 0·0001 & 115 (± 50) P < 0·0001), relative to marasmus (0·698 (± 0·212) & 153 (± 42)). ADMA and cysteine were well correlated with methionine in both kwashiorkor and marasmic-kwashiorkor. INTERPRETATION: Kwashiorkor and marasmic-kwashiorkor were distinguished by evidence of one-carbon metabolism dysfunction. Correlative observations suggest that methionine deficiency drives this dysfunction, which is implicated in the syndrome's pathogenesis. The hypothesis that kwashiorkor can be prevented by fortifying low quality diets with methionine, along with nutrients that support efficient methionine use, such as choline, requires further investigation. FUNDING: The Hickey Family Foundation, the American College of Gastroenterology, the NICHD, and the USDA/ARS.


Assuntos
Kwashiorkor , Desnutrição , Desnutrição Proteico-Calórica , Carbono , Criança , Pré-Escolar , Estudos Transversais , Humanos , Lactente , Kwashiorkor/etiologia , Kwashiorkor/metabolismo , Desnutrição Proteico-Calórica/metabolismo
11.
J Cardiothorac Vasc Anesth ; 36(8 Pt A): 2303-2312, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34774406

RESUMO

OBJECTIVES: Acute kidney injury (AKI) remains a leading source of morbidity and mortality after cardiothoracic surgery. Insulin-like growth factor-binding protein 7 (IGFBP7), and tissue inhibitor of metalloproteinases-2 (TIMP-2), are novel early-phase renal biomarkers that have been validated as sensitive predictors of AKI. Here the authors studied the efficacy of these biomarkers for predicting AKI after left ventricular assist device (LVAD) implantation and cardiac transplantation. DESIGN/SETTING/PARTICIPANTS/INTERVENTIONS: This was a prospective study of 73 patients undergoing LVAD implantation (n = 37) or heart transplant (n = 36) from 2016 to 2017 at the authors' center. TIMP-2 and IGFBP7 were measured with the NephroCheck Test on urine samples before surgery and one-to-six hours after surgery. NephroCheck scores were assessed as predictors of moderate/severe AKI (Kidney Disease International Global Outcomes 2/3 creatinine criteria) within 48 hours of surgery, and the association with survival to one year was investigated. MEASUREMENTS AND MAIN RESULTS: The LVAD and transplant cohorts overall were similar in demographics and baseline creatinine (p > 0.05), with the exception of having more African-American patients in the LVAD arm (p = 0.003). Eleven (30%) LVAD and 16 (44%) transplant patients developed moderate/severe AKI. Overall, AKI was associated with postsurgery NephroCheck (odds ratio [95% confidence interval] for 0.1 mg/dL increase: 1.36 [1.04-1.79]; p = 0.03), but not with baseline NephroCheck (p = 0.92). When analyzed by cohort, this effect remained for LVAD (1.68 [1.05-2.71]; p = 0.03) but not for transplant (p = 0.15). Receiver operating characteristic analysis showed postoperative NephroCheck to be superior to baseline creatinine in LVAD (p = 0.046). Furthermore, an increase of 0.1 mg/dL in postoperative NephroCheck was associated with a 10% increase in the risk of mortality (adjusted hazard ratio: 1.11 [1.01-1.21]; p = 0.04) independent of age and body mass index. CONCLUSION: Assessment of TIMP-2 and IGFBP7 within six hours after surgery appeared effective at predicting AKI in patients with LVADs. Larger studies are warranted to validate these findings.


Assuntos
Injúria Renal Aguda , Transplante de Coração , Coração Auxiliar , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Biomarcadores/urina , Pontos de Checagem do Ciclo Celular , Creatinina , Transplante de Coração/efeitos adversos , Coração Auxiliar/efeitos adversos , Humanos , Estudos Prospectivos , Inibidor Tecidual de Metaloproteinase-2/urina
12.
Metabolites ; 11(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34436466

RESUMO

Metabolomic analysis may provide an integrated assessment in genetically and pathologically heterogeneous populations. We used metabolomic analysis to gain mechanistic insight into the small and diverse population of adults with congenital heart disease (ACHD). Consecutive ACHD patients seen at a single institution were enrolled. Clinical variables and whole blood were collected at regular clinical visits. Stored plasma samples were analyzed for the concentrations of 674 metabolites and metabolic markers using mass spectrometry with internal standards. These samples were compared to 28 simultaneously assessed healthy non-ACHD controls. Principal component analysis and multivariable regression modeling were used to identify metabolites associated with clinical outcomes in ACHD. Plasma from ACHD and healthy control patients differed in the concentrations of multiple metabolites. Differences between control and ACHD were greater in number and in degree than those between ACHD anatomic groups. A metabolite cluster containing amino acids and metabolites of amino acids correlated with negative clinical outcomes across all anatomic groups. Metabolites in the arginine metabolic pathway, betaine, dehydroepiandrosterone, cystine, 1-methylhistidine, serotonin and bile acids were associated with specific clinical outcomes. Metabolic markers of disease may both be useful as biomarkers for disease activity and suggest etiologically related pathways as possible targets for disease-modifying intervention.

13.
Cancer Chemother Pharmacol ; 88(4): 655-664, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34170389

RESUMO

PURPOSE: We evaluated effects of asparaginase dosage, schedule, and formulation on CSF asparagine in children with acute lymphoblastic leukemia (ALL). METHODS: We evaluated CSF asparagine (2114 samples) and serum asparaginase (5007 samples) in 482 children with ALL treated on the Total XVI study (NCT00549848). Patients received one or two 3000 IU/m2 IV pegaspargase doses during induction and were then randomized in continuation to receive 2500 IU/m2 or 3500 IU/m2 IV intermittently (four doses) on the low-risk (LR) or continuously (15 doses) on the standard/high risk (SHR) arms. A pharmacokinetic-pharmacodynamic model was used to estimate the duration of CSF asparagine depletion below 1 uM. RESULTS: During induction, CSF asparagine depletion after two doses of pegaspargase was twice as long as one dose (median 30.7 vs 15.3 days, p < 0.001). During continuation, the higher dose increased the CSF asparagine depletion duration by only 9% on the LR and 1% in the SHR arm, consistent with the nonlinear pharmacokinetics of serum asparaginase. Pegaspargase caused a longer CSF asparagine depletion duration (1.3-5.3-fold) compared to those who were switched to erwinase (p < 0.001). The median (quartile range) serum asparaginase activity needed to maintain CSF asparagine below 1 µM was 0.44 (0.20, 0.99) IU/mL. Although rare, CNS relapse was higher with decreased CSF asparagine depletion (p = 0.0486); there was no association with relapse at any site (p = 0.3). CONCLUSIONS: The number of pegaspargase doses has a stronger influence on CSF asparagine depletion than did dosage, pegaspargase depleted CSF asparagine longer than erwinase, and CSF asparagine depletion may prevent CNS relapses.


Assuntos
Antineoplásicos/administração & dosagem , Asparaginase/administração & dosagem , Asparagina/líquido cefalorraquidiano , Polietilenoglicóis/administração & dosagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Antineoplásicos/farmacocinética , Asparaginase/farmacocinética , Criança , Relação Dose-Resposta a Droga , Esquema de Medicação , Humanos , Modelos Biológicos , Polietilenoglicóis/farmacocinética , Estudos Prospectivos
14.
FASEB J ; 35(6): e21629, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949005

RESUMO

Cystathionine beta-synthase (CBS) is a key enzyme of the trans-sulfuration pathway that converts homocysteine to cystathionine. Loss of CBS activity due to mutation results in CBS deficiency, an inborn error of metabolism characterized by extreme elevation of plasma total homocysteine (tHcy). C57BL6 mice containing either a homozygous null mutation in the cystathionine ß-synthase (Cbs-/- ) gene or an inactive human CBS protein (Tg-G307S Cbs-/- ) are born in mendelian numbers, but the vast majority die between 18 and 21 days of age due to liver failure. However, adult Cbs null mice that express a hypomorphic allele of human CBS as a transgene (Tg-I278T Cbs-/- ) show almost no neonatal lethality despite having serum tHcy levels similar to mice with no CBS activity. Here, we characterize liver and serum metabolites in neonatal Cbs+/- , Tg-G307S Cbs-/- , and Tg-I278T Cbs-/- mice at 6, 10, and 17 days of age to understand this difference. In serum, we observe similar elevations in tHcy in both Tg-G307S Cbs-/- and Tg-I278T Cbs-/- compared to control animals, but methionine is much more severely elevated in Tg-G307S Cbs-/- mice. Large scale metabolomic analysis of liver tissue confirms that both methionine and methionine-sulfoxide are significantly more elevated in Tg-G307S Cbs-/- animals, along with significant differences in several other metabolites including hexoses, amino acids, other amines, lipids, and carboxylic acids. Our data are consistent with a model that the neonatal lethality observed in CBS-null mice is driven by excess methionine resulting in increased stress on a variety of related pathways including the urea cycle, TCA cycle, gluconeogenesis, and phosphatidylcholine biosynthesis.


Assuntos
Cistationina beta-Sintase/fisiologia , Modelos Animais de Doenças , Falência Hepática/patologia , Metaboloma , Mutação , Animais , Animais Recém-Nascidos , Feminino , Falência Hepática/etiologia , Falência Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo
15.
Mol Nutr Food Res ; 65(14): e2100197, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34010503

RESUMO

SCOPE: Many pregnant women have higher folic acid (FA) intake due to food fortification and increased vitamin use. It is reported that diets containing five-fold higher FA than recommended for mice (5xFASD) during pregnancy resulted in methylenetetrahydrofolate reductase (MTHFR) deficiency and altered choline/methyl metabolism, with neurobehavioral abnormalities in newborns. The goal is to determine whether these changes have their origins in the placenta during embryonic development. METHODS AND RESULTS: Female mice are fed control diet or 5xFASD for a month before mating and maintained on these diets until embryonic day 17.5. 5xFASD led to pseudo-MTHFR deficiency in maternal liver and altered choline/methyl metabolites in maternal plasma (increased methyltetrahydrofolate and decreased betaine). Methylation potential (S-adenosylmethionine:S-adenosylhomocysteine ratio) and glycerophosphocholine are decreased in placenta and embryonic liver. Folic acid supplemented diet results in sex-specific transcriptome profiles in placenta, with validation of dietary expression changes of 29 genes involved in angiogenesis, receptor biology or neurodevelopment, and altered methylation of the serotonin receptor 2A gene. CONCLUSION: Moderate increases in folate intake during pregnancy result in placental metabolic and gene expression changes, particularly in angiogenesis, which may contribute to abnormal behavior in pups. These results are relevant for determining a safe upper limit for folate intake during pregnancy.


Assuntos
Ácido Fólico/farmacologia , Homocistinúria/induzido quimicamente , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Espasticidade Muscular/induzido quimicamente , Placenta/metabolismo , Fatores Sexuais , Animais , Metilação de DNA , Suplementos Nutricionais , Feminino , Ácido Fólico/efeitos adversos , Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Ftálicos/sangue , Gravidez , Transtornos Psicóticos , S-Adenosilmetionina/sangue , Transcriptoma/efeitos dos fármacos
16.
Sci Transl Med ; 13(587)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790021

RESUMO

Accelerated postnatal growth is a potentially modifiable risk factor for future obesity. To study how specific breast milk components contribute to early growth and obesity risk, we quantified one-carbon metabolism-related metabolites in human breast milk and found an inverse association between milk betaine content and infant growth. This association was replicated in an independent and geographically distinct cohort. To determine the potential role of milk betaine in modulating offspring obesity risk, we performed maternal betaine supplementation experiments in mice. Higher betaine intake during lactation increased milk betaine content in dams and led to lower adiposity and improved glucose homeostasis throughout adulthood in mouse offspring. These effects were accompanied by a transient increase in Akkermansia spp. abundance in the gut during early life and a long-lasting increase in intestinal goblet cell number. The link between breast milk betaine and Akkermansia abundance in the gut was also observed in humans, as infants exposed to higher milk betaine content during breastfeeding showed higher fecal Akkermansia muciniphila abundance. Furthermore, administration of A. muciniphila to mouse pups during the lactation period partially replicated the effects of maternal breast milk betaine, including increased intestinal goblet cell number, lower adiposity, and improved glucose homeostasis during adulthood. These data demonstrate a link between breast milk betaine content and long-term metabolic health of offspring.


Assuntos
Betaína , Leite Humano , Akkermansia , Animais , Dieta Hiperlipídica , Feminino , Lactação , Camundongos
17.
J Nutr ; 151(4): 857-865, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33561219

RESUMO

BACKGROUND: North American women consume high folic acid (FA), but most are not meeting the adequate intakes for choline. High-FA gestational diets induce an obesogenic phenotype in rat offspring. It is unclear if imbalances between FA and other methyl-nutrients (i.e., choline) account for these effects. OBJECTIVE: This study investigated the interaction of choline and FA in gestational diets on food intake, body weight, one-carbon metabolism, and hypothalamic gene expression in male Wistar rat offspring. METHODS: Pregnant Wistar rats were fed an AIN-93G diet with recommended choline and FA [RCRF; 1-fold, control] or high (5-fold) FA with choline at 0.5-fold [low choline and high folic acid (LCHF)], 1-fold [recommended choline and high folic acid (RCHF)], or 2.5-fold [high choline and high folic acid (HCHF)]. Male offspring were weaned to an RCRF diet for 20 wk. Food intake, weight gain, plasma energy-regulatory hormones, brain and plasma one-carbon metabolites, and RNA sequencing (RNA-seq) in pup hypothalamuses were assessed. RESULTS: Adult offspring from LCHF and RCHF, but not HCHF, gestational diets had 10% higher food intake and weight gain than controls (P < 0.01). HCHF newborn pups had lower plasma insulin and leptin compared with LCHF and RCHF pups (P < 0.05), respectively. Pup brain choline (P < 0.05) and betaine (P < 0.01) were 22-33% higher in HCHF pups compared with LCHF pups; methionine was ∼23% lower after all high FA diets compared with RCRF (P < 0.01). LCHF adult offspring had lower brain choline (P < 0.05) than all groups and lower plasma 5-methyltetrahydrofolate (P < 0.05) than RCRF and RCHF groups. HCHF adult offspring had lower plasma cystathionine (P < 0.05) than LCHF adult offspring and lower homocysteine (P < 0.01) than RCHF and RCRF adult offspring. RNA-seq identified 144 differentially expressed genes in the hypothalamus of HCHF newborns compared with controls. CONCLUSIONS: Increased choline in gestational diets modified the programming effects of high FA on long-term food intake regulation, plasma energy-regulatory hormones, one-carbon metabolism, and hypothalamic gene expression in male Wistar rat offspring, emphasizing a need for more attention to the choline and FA balance in maternal diets.


Assuntos
Regulação do Apetite/fisiologia , Colina/administração & dosagem , Ácido Fólico/administração & dosagem , Fenômenos Fisiológicos da Nutrição Materna , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Peso Corporal/fisiologia , Encéfalo/metabolismo , Colina/sangue , Ingestão de Alimentos/fisiologia , Feminino , Ácido Fólico/sangue , Expressão Gênica , Hipotálamo/metabolismo , Insulina/sangue , Gordura Intra-Abdominal/anatomia & histologia , Leptina/sangue , Masculino , Troca Materno-Fetal/fisiologia , Modelos Animais , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Desmame
18.
Biochimie ; 173: 91-99, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32330571

RESUMO

Homozygosity for the C677T polymorphism in MTHFR (TT genotype) is associated with a 24-87% increased risk of hypertension. Blood pressure (BP) lowering was previously reported in adults with the TT genotype, in response to supplementation with the MTHFR cofactor, riboflavin. Whether the BP phenotype associated with the polymorphism is related to perturbed one-carbon metabolism is unknown. This study investigated one-carbon metabolites and their responsiveness to riboflavin in adults with the TT genotype. Plasma samples from adults (n 115) screened for the MTHFR genotype, who previously participated in RCTs to lower BP, were analysed for methionine, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), betaine, choline and cystathionine by liquid chromatography tandem mass spectrometry (LC-MS/MS). The one-carbon metabolite response to riboflavin (1.6 mg/d; n 24) or placebo (n 23) for 16 weeks in adults with the TT genotype was also investigated. Plasma SAM (74.7 ± 21.0 vs 85.2 ± 22.6 nmol/L, P = 0.013) and SAM:SAH ratio (1.66 ± 0.55 vs 1.85 ± 0.51, P = 0.043) were lower and plasma homocysteine was higher (P = 0.043) in TT, compared to CC individuals. In response to riboflavin, SAM (P = 0.008) and cystathionine (P = 0.045) concentrations increased, with no responses in other one-carbon metabolites observed. These findings confirm perturbed one-carbon metabolism in individuals with the MTHFR 677TT genotype, and for the first time demonstrate that SAM, and cystathionine, increase in response to riboflavin supplementation in this genotype group. The genotype-specific, one-carbon metabolite responses to riboflavin intervention observed could offer some insight into the role of this gene-nutrient interaction in blood pressure.


Assuntos
Aminoácidos Sulfúricos/sangue , Betaína/sangue , Colina/sangue , Hipertensão/sangue , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Riboflavina/administração & dosagem , Suplementos Nutricionais , Feminino , Humanos , Hipertensão/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo Genético
19.
Epigenetics ; 15(8): 871-886, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32096676

RESUMO

Methionine metabolism is dysregulated in multiple sclerosis (MS). The methyl donor betaine is depleted in the MS brain where it is linked to changes in levels of histone H3 trimethylated on lysine 4 (H3K4me3) and mitochondrial impairment. We investigated the effects of replacing this depleted betaine in the cuprizone mouse model of MS. Supplementation with betaine restored epigenetic control and alleviated neurological disability in cuprizone mice. Betaine increased the methylation potential (SAM/SAH ratio), levels of H3K4me3, enhanced neuronal respiration, and prevented axonal damage. We show that the methyl donor betaine and the betaine homocysteine methyltransferase (BHMT) enzyme can act in the nucleus to repair epigenetic control and activate neuroprotective transcriptional programmes. ChIP-seq data suggest that BHMT acts on chromatin to increase the SAM/SAH ratio and histone methyltransferase activity locally to increase H3K4me3 and activate gene expression that supports neuronal energetics. These data suggest that the methyl donor betaine may provide neuroprotection in MS where mitochondrial impairment damages axons and causes disability.


Assuntos
Betaína/farmacologia , Montagem e Desmontagem da Cromatina , Epigênese Genética , Mitocôndrias/metabolismo , Esclerose Múltipla/genética , Animais , Betaína-Homocisteína S-Metiltransferase/metabolismo , Respiração Celular , Células Cultivadas , Cuprizona/toxicidade , Código das Histonas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
20.
J Am Heart Assoc ; 9(4): e013368, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32067580

RESUMO

Background Hyperhomocysteinemia is a risk factor for ischemic stroke; however, a targeted treatment strategy is lacking partly because of limited understanding of the causal role of homocysteine in cerebrovascular pathogenesis. Methods and Results In a genetic model of cystathionine beta synthase (CBS) deficiency, we tested the hypothesis that elevation in plasma total homocysteine exacerbates cerebrovascular injury and that memantine, a N-methyl-D-aspartate receptor antagonist, is protective. Mild or severe elevation in plasma total homocysteine was observed in Cbs+/- (6.1±0.3 µmol/L) or Cbs-/- (309±18 µmol/L) mice versus Cbs+/+ (3.1±0.6 µmol/L) mice. Surprisingly, Cbs-/- and Cbs+/- mice exhibited similar increases in cerebral infarct size following middle cerebral artery ischemia/reperfusion injury, despite the much higher total homocysteine levels in Cbs-/- mice. Likewise, disruption of the blood brain barrier was observed in both Cbs+/- and Cbs-/- mice. Administration of the N-methyl-D-aspartate receptor antagonist memantine protected Cbs+/- but not Cbs-/- mice from cerebral infarction and blood brain barrier disruption. Our data suggest that the differential effect of memantine in Cbs+/- versus Cbs-/- mice may be related to changes in expression of N-methyl-D-aspartate receptor subunits. Cbs-/-, but not Cbs+/- mice had increased expression of NR2B subunit, which is known to be relatively insensitive to homocysteine. Conclusions These data provide experimental evidence that even a mild increase in plasma total homocysteine can exacerbate cerebrovascular injury and suggest that N-methyl-D-aspartate receptor antagonism may represent a strategy to prevent reperfusion injury after acute ischemic stroke in patients with mild hyperhomocysteinemia.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Homocisteína/sangue , Hiper-Homocisteinemia/tratamento farmacológico , Infarto da Artéria Cerebral Média/prevenção & controle , Memantina/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Cistationina beta-Sintase/deficiência , Cistationina beta-Sintase/genética , Modelos Animais de Doenças , Progressão da Doença , Homocistinúria/enzimologia , Homocistinúria/genética , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/enzimologia , Hiper-Homocisteinemia/genética , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA